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Abstract

Static program analysis techniques working on object-oriented languages require pre-
cise knowledge of the aliasing relation between variables. This knowledge is important
to, among other things, understand the read and write effects of method calls on ob-
jects. Understanding such effects in turn enables compiler optimizations and other
code transformations such as automated parallelization. This thesis presents a combi-
nation of a pointer analysis with a memory effect analysis for the Scala programming
language. Our analysis is based on abstract interpretation, and computes summaries
of method effects as graphs. This representation allows the analysis to be composi-
tional. Our second contribution is an implementation of our analysis in a tool called
Insane. Our tool is built as a plugin for the official Scala compiler. It accepts any
Scala program, and is freely available.
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Chapter 1

Introduction

Pointer analysis is a static analysis technique that builds information on the relations

between pointers and allocated objects. It is also often referred to as points-to or

alias analysis. In object-oriented languages such as Scala, the use of pointers is

pervasive, rendering even basic static analyses techniques brittle. It is thus often

necessary to establish information on the aliasing relations between variables, as well

as some knowledge of the shape of structures stored on the heap. This then enables

opportunities to run more analyses or to perform compiler optimizations.

Effect analyses attempt to summarize the side effects of procedures in a certain

domain. In this thesis, we focus on memory-based effects, and are thus interested

in computing a summary of read and write operations performed on object fields.

Clearly, any such effect analysis needs to rely on a good pointer analysis, and vice-

versa. For this reason, we perform both analyses side by side.

The summary of effects coupled with aliasing information can later be used to

perform various kinds of optimizations or enable more sophisticated analyses. For

instance, if we establish that two sequential operations affect disjoint parts of the

heap, we could safely run them in parallel. Also, given a precise alias information, we

could perform some form of typestate analysis, which consists in checking that objects

are used following a certain protocol. A typical example is objects representing files:

it is required that you first open a file before reading from it. Such analyses[FYD+08]

require a precise alias analysis to limit the amount of spurious warnings.
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Our analysis is based on abstract interpretation [CC77, CC02]. The abstract

representation consists of graphs and is closely based on [Sal06]. Such graphs are

built so that the analysis is compositional. One of the challenges of such analysis is

to provide a representation for the effects of a method such that it adapts well to the

various calling context. For the analysis to be compositional, we cannot by design

rely on much information from specific call sites.

1.1 Contributions

This thesis makes the following contributions:

• We present an inter-procedural effect and alias analysis for the Scala program-

ing language. Our analysis works on arbitrary Scala code, assuming the absence

of concurrency and provided that the complete source code is available. Our

analysis builds on previous work on inter-procedural pointer analysis for Java

[Sal06]. We adapted and extended the precision and scope of the original tech-

nique with the following features:

– A differentiation between strong and weak field updates to detect definitely

destructive assignments.

– A refinement of the allocation site abstraction that summarizes sets of ob-

ject; by incorporating part of the call-stack information in the labelling of

allocation sites, we increase the precision of the analysis for some common

patterns, such as factory methods.

– A recency abstraction to be able to determine when an allocation site

abstracts a unique object (singletons).

• We have implemented our analysis in a tool called Insane whose source code

is freely available.1 Insane extends the official Scala compiler and can thus in

principle be used with any Scala program.

1http://github.com/colder/insane
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1.2 Outline

The rest of this thesis is organized as follows: Chapter 2 gives a quick overview of

the tool, followed by an in-depth description of the initial analysis phases. Chapter 3

describes in full details the pointer and effect analysis phase. In Chapter 4, we

describe implementation details. Chapter 5 describes previous work done in the field

of pointer and effect analysis. We then conclude in Chapter 6 with some ideas for

future work.
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Chapter 2

Tool Overview

The tool is made of five distinct phases that are topologically ordered in terms of

dependencies. We briefly describe each of the phases necessary for the overall analysis.

We then describe each major phases in its respective section. The tool is decomposed

as follows, in order:

1. Function Extraction: collects function definitions seen in the abstract syntax

tree provided by the Scala compiler and extracts pre- and post-conditions.

2. Control Flow Graph Generation: generates a control flow graph for each func-

tion definition, composed of simple assign statements.

3. Class Hierarchy Analysis: collects information to find all subclasses of a class.

4. Type Analysis: analyzes potential runtime types and builds the initial callgraph.

5. Pointer Analysis: analyzes aliasing effects occurring in each function. We de-

scribe this phase in full detail in Chapter 3.
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2.1 Function Extraction

Each function definition seen in the code is first collected. We start by extracting

invariants as well as pre- and post- conditions explicitly stated in the code. We

illustrate how Scala allows to express these conditions in Figure 2-1.

class A (val next: A) {
def test(a: A, b: A) = {

require(a ne b) // pre−condition

var c = a
while(c ne b) {

assert(c ne null) // invariant
c = c.next

}
c

} ensuring( r ⇒ r eq b ) // post−condition
}

Figure 2-1: Expressing invariants and pre-/post-conditions. In Scala, == and ! = are
not necessarily checking reference equality. For strict reference equality, Scala defines
eq and ne.

2.2 Control Flow Graph Generation

For each function definition extracted previously, we generate the corresponding con-

trol flow graph by converting complex statements into simple assignments. We define

the set of simple assignments in Figure 2-2.

Scala converts most operations to method calls, and introduces implicit getters

and setters for non-private fields. For example, the expression

val a = 2 ∗ this.f

is translated by the compiler into

val a = 2.∗(this.f())

where ∗ is a method on the class Int, and f is the implicit getter method. We then

translate it into a simpler form analogous to three-address code:

14



CFG Statement Code example
AssignCast r = v.asInstanceOf[T]

AssignTypeCheck r = v.isInstanceOf[T]

AssignVal r = v

AssignFieldRead r = obj.f

AssignFieldWrite obj.f = v

AssignNew r = new T

AssignApplyMeth r = obj.meth(..args..)

AssignEQ r = v1 eq v2

AssignNE r = v1 ne v2

Figure 2-2: CFG Statements

val tmp1 = this.f()

val tmp2 = 2.∗(tmp1)

val a = tmp2

We also explicitly decompose the instantiation statement a = new C(a1, ..., an)

into two operations: the allocation (a = new C) and the constructor call (a. < init >

(a1, ..., an)).

When generating the CFG for the main constructor of a given class, we start by

assigning the fields defined by the class to their initial value. We assign null to fields

of non-primitive type, 0 to integer fields, etc.

To illustrate the CFG generation phase, we provide in Figure 2-3 the graph for

the method defined in Figure 2-1 without its pre- or post-conditions.

whenTrue3

v2

c = c.next()

entry
c = a

v5branch#4 = c.ne(b) exit

[branch#4]

endWhile4
[!branch#4] retval#1 = c

Figure 2-3: CFG Representation
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2.3 Class Hierarchy

This phase is responsible for building the complete graph representing the class hier-

archy. From this complete class hierarchy, we are able to obtain information such as

subtypes(C) := {T | T,C ∈ Classes ∧ T v C}, which is required by later phases.

It is worth noting that in object-oriented languages such as Scala, subtypes() is

generally not bounded. This is due to the fact that most classes are not defined as

final, so that users can extend and redefine parts of them. Although Scala defines the

concept of sealed class that forces all direct subtypes to be defined in the same source

file, this is not sufficient to ensure finiteness of subtypes, because it only bounds direct

children. Therefore, children of non-sealed parents can be defined anywhere. In other

words, the sealed property is not transitive.

To provide a useful analysis, we assume whole-program analysis: we consider

that classes analyzed represent the entire program, which allows us to have bounded

subtypes() sets. We believe that this is a reasonable and pragmatic assumption, as

it would not be useful to analyze classes while assuming that most methods could be

in fact arbitrarily overridden in imaginary sub-classes.
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2.4 Type Analysis

2.4.1 Introduction

Object oriented languages such as Scala implement dynamic dispatch: the target of

a method call is only determined at runtime, based on the actual runtime type of the

receiver. This feature is essential in object oriented languages as it allows subtype

polymorphism. Consider the Scala code in Figure 2-4: the declared type of obj in

A.test is A, but the target of the method call could either be A.foo or B.foo, based on

the actual type of the value of obj, which is only fully determined at runtime.

class A {
def run {

test(new B)
}
def test(obj: A) {

obj.foo()
}
def foo() {

println(”A”)
}
}

class B extends A {
override def foo() {

println(”B”)
}
}

Figure 2-4: Dynamic dispatch

In general, every redefinitions of foo in all subclasses of A could be targets of this

method call. We formalize this concept by associating for each method call a set of

targets, CT . For this example, we have:

CT (obj.foo()@p) = {A.foo,B.foo}

where p is the program point–or label uniquely identifying the call.

Type analysis is responsible for computing this set of targets CT . For this analysis

to be valid, the set of targets should include all methods that could be called at

runtime. It may however be imprecise and include methods that will never be called

at runtime.

17



A simplistic implementation of this analysis would be the following. Consider a

call rec.foo() where the receiver rec is of type T, all subtypes of T where method foo()

is redefined:

SimpleCT (rec.foo(..)@p) := {C.foo | C ∈ Classes ∧

C v type(rec) ∧

foo ∈ methods(C)}

where methods(C) is the set of methods explicitly (re)defined in class C. This analysis

is sound, but it will often be imprecise, as illustrated in Figure 2-5. Even though the

type of obj is A, so subtypes are {A,B}, the only possible target of obj.foo() is A.foo.

class A {
def invoke {

val obj = new A()
obj.foo()

}
def foo() {

println(”A”)
}

}

class B extends A {
override def foo() {

println(”B”)
}

}

Figure 2-5: Example of imprecision of the simplistic approach

However, we note that a lack of precision in this analysis will only result in poorer

time performance, and will not impact the precision of the overall analysis. Indeed,

this analysis is only used to build the initial call graph. Even though the simplistic

approach described before might be sufficient in practice, we define a slightly more

precise type analysis for this call graph generation. An even more precise type analysis

will be performed during the pointer analysis phase.

2.4.2 Analysis

Analyzing the targets of method calls can be reduced to analyzing the runtime types

of variables. Those types then fully determines the targets of the call. Our analysis

18



will thus analyze types that could occur at runtime, for every variable present in the

code. We distinguish three types of variables:

1. A.f: Field f of class A.

2. arg: Argument arg of the function.

3. locVar: Local variable locVar.

For each of these variable occurrences in the code, our analysis will compute the

set of runtime types, that we will call ComputedTypes, as opposed to RuntimeTypes

which is the set of all types that could occur in runtime. For the resulting type

analysis to be valid, the set of computed object types should be a superset of the

types of values assigned to those variables at runtime. We thus have the following

validity requirement:

∀v ∈ V ariables : RuntimeTypes(v) ⊆ ComputedTypes(v)

To compute the set of types used at runtime, we track values assigned to those

variables. When doing this, we immediately face two non-trivial problems:

1. The values of arguments are determined by call-sites, determining call-sites of

a certain method is analogous to determining call targets, which is the purpose

of type analysis.

2. Fields can be assigned from multiple locations, within various methods. Again,

determining whether those methods are called, and in which order, requires

type analysis.

Both of those problems could be solved using a fix-point mechanism. However,

at the cost of some precision, we decided to fall back to a simple implementation for

19



both arguments and fields:

ComputedTypes(A.f) := {T | T v type(A.f)}

ComputedTypes(arg) := {T | T v type(arg)}

where type() is the statically declared type.

For local variables, we run a flow-sensitive, context-insensitive, abstract interpretation-

based analysis. This analysis is thus intra-procedural. It computes, at every program

point, the set of all types assigned to local variables. For this analysis to be efficient,

we split the type information into two sets Tsub and Tex. Tex contains ”exact” types,

while Tsub contains types from which we need to also consider subtypes. This split is

useful for two reasons: first, it allows us to keep a small representation for subtypes

of, e.g. Object. Second, it lets us delay the resolution of the actual types until the

last moment. Globally, storing runtime types with that representation is much more

memory efficient than storing a plain set of potential types. We formally define the

type information as follows:

TypeInfo := 〈Tsub v Types, Tex v Types〉

Types := Classes ∪ {Array[T ] | T ∈ Types}

We thus have a point-wise lattice L over pairs of sets of types. Its point-wise

lowest upper bound operation is naturally defined as:

〈Tsuba , Texa〉 t 〈Tsubb , Texb
〉 = 〈Tsuba ∪ Tsubb , Texa ∪ Texb

〉

We outline in Figure 2-6 the abstraction function for important values.

The number of used types, although infinite in theory, is finite for a given program

given that it typechecks. For this reason, we can argue that this analysis terminates,

20



Expression ex Abstract Value α(ex)
new A 〈∅, {A}〉
null 〈∅, ∅〉
A.f 〈{type(A.f)}, {type(A.f)}〉
rec.meth(..) 〈{type(rec.meth)}, {type(rec.meth)}〉

Figure 2-6: Abstraction function α, where type() returns the declared type.

since there are only finite ascending chains in the lattice as P(Types) is finite. We

also have naturally monotonic transfer functions.

When the fix-point is reached, we can derive the set of call targets CT for each

method call using facts computed at their program point:

CT (rec.meth(..)@p) := {T.meth | T ∈ γ(facts@p(rec)) ∧ meth ∈ methods(T )}

where γ is the concretisation function, computing the entire set of types that the pair

represents:

γ(〈Tsub, Tex〉) := {T | ∃S ∈ Tsub.T @ S} ∪ Tex

This analysis provides us with a relatively precise information on call targets. We

believe that the obvious lack of precision in the presence of fields and arguments is not

problematic, since the call graph is only used to determine groups of mutually recur-

sive functions. For this reason, this analysis might even be overly precise. However,

we have seen that it is sufficiently fast in practice.
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Chapter 3

Pointer and Effect Analyses

The problem of analyzing pointers is closely related to the field of effects analysis.

Indeed, establishing the relationships between pointers require understanding how

and to what values fields are written to. Because of this strong inter-dependence, it

is profitable to perform both analyses simultaneously.

Our analysis builds summaries of methods, both in terms of their effects and

in terms of the shape of the heap. The analysis stores these summaries as graphs.

To compute the graph corresponding to each method, the analysis performs a flow-

sensitive abstract interpretation, and computes such a graph at each program point.

For method calls, we inline the graph of the callee into the caller’s graph. For mutually

recursive methods, we iteratively update the graphs until we reach a fix-point. The

next section describes how those graphs are generated and what their semantics are.

This representation is similar to the graph representation developed in [Sal06]. We

can point out few important differences:

• His work is primarily focused on escape analysis while we are interested mostly

in effects, and thus we do not retain escape-specific information in our abstract

representation.

• We introduce multiple kinds of global nodes that were not present in his work

since it would be redundant for escape analysis

• We improved the precision of the graphs by differentiating between strong and

23



weak updates, by considering as independent object allocations resulting from

different method call sequences, and by using recency abstraction.

• Although the representations are similar, the semantics of our graphs as well as

the procedures to build them are thus different.
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3.1 Graph Semantics

Our representation is based on labelled directed graphs augmented with some meta-

data. They are defined by:

G := 〈 N ⊆ Nodes,

E ⊆ Edges,

locV ar ⊆ V ariables× P(N),

RetNodes ⊆ N (Nodes representing the return value)

Edges := IEdges ∪OEdges

IEdges := 〈N, f,N〉 ∈ Nodes× Fields×Nodes (Inside Edges)

OEdges := 〈N, f,N〉 ∈ Nodes× Fields×Nodes (Outside Edges)

V ariables := All local variables and arguments

Fields := Field names

Nodes := {GBNode,NNode} ∪ INodes ∪ LNodes

∪PNodes ∪OBNodes ∪ LitNodes

INodes := 〈T 〉 ∈ TypeInfo× ProgramPoints (Allocation node)

LNodes := 〈from, via, T 〉 ∈ Nodes× Fields× TypeInfo (Load node)

PNodes := 〈i, T 〉 ∈ N× TypeInfo (Param node)

OBNodes := 〈T 〉 ∈ TypeInfo (Object Node)

LitNodes := 〈T 〉 ∈ TypeInfo (Literal values of primitive types)

NNode := (Null node)

GBNode := (Global node)

Nodes generally represent sets of objects (including literals of primitive types),

while edges represent may/must-point-to relations. G also contains locV ar which is

a mapping from local variables to sets of nodes and Ret consists of the set of nodes

25



that are returned form the procedure.

We present the various abstract representations in a graphical manner. Instead

of attaching the metadata on the side, we draw it directly on the graph using the

following convention: we draw local variables as border-less nodes, with an edge to

each node they point to, drawn in blue. Return nodes are drawn using a double circle.

Inside edges are drawn using a full edge, while outside edges are dashed. To illustrate

this, we represent in Figure 3-1 the code and graph corresponding to

G = 〈N,E, locV ar,Ret〉 with

N := {n1 : PNode(0), n2 : LNode(n1, f2, [60, 26]), n3 : INode(@[37]),

n4 : NNull}

E := {IEdge(n1, f1, n2), IEdge(n1, f2, n3), IEdge(n3, f1, n4),

IEdge(n3, f2, n4), OEdge(n1, f2, n2)}

locV ar := {this 7→ {n1}, tmp 7→ {n2, n3}}

Ret := {n2, n3}

class T(var f1: T, var f2: T) {
def test() = {

var tmp = this.f2
if (a != null) {

tmp = new T(null, null)
}
this.f1 = tmp
tmp
}
}

tmp

L[60,26]

I(@[37])

this P(0)

f2 

f1 

f1 

Null
f2 

f1 

Figure 3-1: Sample code and resulting graph representation

26



3.1.1 Nodes

As stated earlier, nodes represent sets of objects. Independently of their kind, each

node carries two pieces of information:

• The type information TypeInfo, corresponding to computed over-approximation

of the runtime types of the objects represented by the nodes.

• A singleton flag, indicating whether the node represents only one object or may

represent more than one. For instance, an allocation in a loop results in multiple

objects being represented by the same allocation site[CWZ90].

We now briefly describe each kind of node and their general meaning in a graph.

Each kind of node is accompanied with the actual graphical representation, so that

nodes are easily recognizable in subsequent examples.

Inside Nodes Inside nodes (INodes) represent objects explicitely allocated via a

new T statement. The graph thus contains one INode per allocation site. The type

of this node is exactly the allocated type (T).

Figure 3-2: Two inside nodes at program points @1 and @2. Blue nodes denote
singleton objects.

Load Nodes Intuitively, load nodes (LNodes) represent objects that are not yet

determined. For instance, the code:

def foo(arg: A) {

val a = arg.f

a

}

27



generates a load node representing the objects that arg.f points to at the time of the

call to foo(). Section 3.5.5 describes in full details how we resolve load nodes when

inlining the graph of the callee into the caller. Note that we do not introduce load

nodes unless necessary. For example, consider the following code:

def foo(arg: A) {

arg.f = arg

val a = arg.f

a

}

we know that arg.f points to arg at the time of the read, and thus we do not need

to introduce a load node. Load nodes are conservatively assuming that they may

represent many objects, and their attached type is the declared type of the field and

all its subtypes.

Figure 3-3: Load Nodes are always dashed. Numbers used in the representation are
used to uniquely identify them. Load nodes are never singletons.

Parameter Nodes Parameter nodes (PNodes) represent arguments of the current

procedure. Parameter nodes are indexed by the position of the argument. The object

corresponding to the current instance (this) is implicitly defined as the PNode of index

0. For example, the following function definition:

class A {

def foo(arg1: B, arg2: C) // ...

}

yields three parameter nodes: PNode(0) of type A and subtypes, PNode(1) of type

B and subtypes and PNode(2) of type C and subtypes. Parameter nodes are always
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considered singletons.

Figure 3-4: Representation of a parameter node. They are always dashed and con-
sidered as singletons.

Object Nodes Scala provides an elegant way of defining singletons using the object

keyword. Object nodes (OBNodes) represent each of those global singleton objects.

Naturally, they represent a single object, and their type information is exactly the

type of the singleton.

Figure 3-5: Representation of a object node.

Global Node The global node (GBNode) represents all possible nodes, it is thus

of type Object and subtypes, and is not singleton. This node is only used in rare

cases, for instance to represent errors: an inside edge to this global node is similar to

a havoc operation on the corresponding field.

Figure 3-6: Representation of a global node, of all types and never singleton.
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Literal Nodes Literal Nodes represent the literal values used within the code.

Except for Strings, those values are not in fact objects. They thus do not have

any outgoing edge, and are here solely to record effects of non-object fields. As one

would expect, literal nodes hold the type of the literal. They are also represented as

singletons; even though they conceptually represent several values, these nodes never

have outgoing edges and therefore regarding them as a unique value is not a problem.

Figure 3-7: Representation of some literal nodes.

Null Node The null node (NNode) represents the empty set of objects correspond-

ing to the null value. It holds no type, and is considered singleton.

Figure 3-8: Representation of a null node.

3.1.2 Edges

We distinguish between two kinds of edges, inside and outside edges. We now briefly

describe the meaning of each:

Inside Edges Inside edges represent write operations to fields. Inside edges are

drawn with a continuous arrow, labelled by the field on which the write occurs. More

than one inside edge with the same field can originate from the same node, signaling

that multiple values could be assigned to the field.
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Outside Edges The intuition behind outside edges is that they encode a way to

reach load nodes. In other words, they represent a read on a field value that does

not have any corresponding node yet. Outside edges are thus closely related to load

nodes. In fact, it is a property of our graphs that every load node is reachable from

a non-load node by following outside edges only. Outside edges are drawn as dashed

edges, labelled by the field read.

To illustrate both kinds of edges, we consider in Figure 3-9 an example of con-

ditional update, along with the relevant parts of the resulting graph. At the end of

class Plop(var next: Plop) {
def test(a: Plop) = {

if (a != null) {
a.next = a
}
}
}

Figure 3-9: Example of weak update in code and corresponding graph.

the test method, a.next either points to a or to the old value, represented by the load

node, which depends on the actual object passed to test().

Now that graphs have been described, we provide the definitions of some utility

functions along with notations that will be used throughout this report.

nodes(G)(v ∈ V ariable) := G.locV ar(v)

types(node ∈ Nodes) := node.types (Type information attached to the node)

singleton(node ∈ Nodes) := node.isSingleton (Whether the node represents one object)

types(G)(v ∈ V ariable) :=
⋃
{types(node)|node ∈ nodes(G)(v)}

e.v1 := The source node of the edge e

e.f := The field labelling the edge e

e.v2 := The destination node of the edge e
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We omit specifying the graph G whenever it is clear from the context.

3.2 Weak and Strong Updates

The concept of weak or strong updates relates to the possibility for an update to

discard old values. For example, after the execution of the following code:

def test() = {

val a = new Counter

a.value = 2

a.value = 3

}

the expected value of a.value is 3, and never 2. In this case, the updates are strong :

they discard previously assigned values. However, in the following code:

def test() = {

val a1 = new A

val a2 = new A

val a = if (..) a1 else a2

a.value = 2

}

we know that a points to either a1 or a2. It would however be wrong to assume that

a1.value or a2.value is now exclusively 2. Generally speaking, we allow a strong update

for r.f = v whenever r represents a single object. In more formal terms, we have that

the condition for a strong update on r.f = v is:

(|nodes(r)| = 1) ∧ (∀n ∈ nodes(r). singleton(n))

We also have to consider strong updates performed in a branch. Consider the

following code:

def test() = {

val a = new A
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a.f = 1

if (..) {

a.f = 2

a.f = 3

}

}

Even though some updates are conditional, we should be able to infer that after

the branch, the value of a.f is either 2 or 3, but never 1. We describe how branches

are handled with respect to strong/weak updates in Section 3.3, describing the lattice

and its join operation.

In case of a weak update, we can no longer discard the old value, and we still

need to have an inside edge pointing to it. In case it is not yet determined by the

code, we introduce a load node that represents this previous value. When the graph

is later inlined, this load node is then mapped to the actual old value, as described

in Section 3.5.5. Figure 3-9 represents such a case.

In order to perform a precise alias analysis, it is key to be able to detect strong

updates as often as the code permits, as discarding old values obviously improves

the overall precision of the analysis. A very important example is field initialization:

without strong updates, every object field would be treated as potentially pointing

to null, which is the default value directly after the allocation of the object.

3.3 Lattice Definition

The lattice that we use in our effect analysis contains the graphs described previously

as elements. As the graph encompasses information about all (relevant) variables,

there is no need to consider a point-wise extension of the lattice.

3.3.1 Join Operation

We now describe the least upper bound (t) operation, also commonly referred to as

join. We generalize it to take an arbitrary number of arguments args := {a1, ...an}.
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Intuitively, it is the union of all graphs, with one exception regarding inside edges:

if one node present in all branches has an inside edge of a field originating from it

in only some of the branches, we have to explicitly introduce a load node along with

its corresponding inside and outside edges. In other words, if one branch performs a

write on a field that is left untouched in other branches, we have to act as if these

branches wrote to the field its own previous value. We define the join operation in

Algorithm 1.

Algorithm 1 Lattice Join Operation

1: function
⊔

(graphs = {G1, .., Gn})
2: if |graphs| = 1 then
3: return x s.t. x ∈ graphs
4: else
5: Ncommon ←

⋂
iNi

6: Pairsall ←
⋃

i{〈ie.v1, ie.f〉 | ie ∈ Gi.E ∧ ie is IEdge}
7: Pairscommon ←

⋂
i{〈ie.v1, ie.f〉 | ie ∈ Gi.E ∧ ie is IEdge}

8: Nload ← {safeLNode(p.v1, p.f,@0) | p ∈ Pairsall − Pairscommon ∧ p.v1 ∈
Ncommon}

9: Eload ← {IEdge(in.v1, in.f, in) | in ∈ Nload} ∪
{OEdge(in.v1, in.f, in) | in ∈ Nload}

10: return 〈
⋃

iGi.N ∪Nload,
⋃

iGi.E ∪ Eload,
⋃

iGi.locV ar,
⋃

iGi.R〉
11: end if
12: end function

We now consider three code examples illustrating the different cases. Each time,

the graph of both branches are provided, along with the graph resulting from joining

them.

Example 1 Figure 3-10 contains a conditional update, without any previous ref-

erence to the conditionally written field. This represents the corner case in which

we need to introduce a load node: indeed, we have Ncommon = {P (0), P (1), P (2)},

allPairs = {〈P (0), f〉}, and Pairscommon = ∅.

Example 2 Figure 3-11 contains a conditional update, preceded by a write on the

same field. In this case, no load node needs to be introduced.
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class A {
var f: A = null
def test(other1: A, other2: A) {

if ( .. ) {
this.f = other1 // Branch 1
} else {

// Branch 2
}

// Result
}
}

this P(0)

P(1)

f 

P(2)

other1

other2

(a) Branch 1

P(0)

other2 P(2)

this

P(1)other1

(b) Branch 2

L[0]
P(0) f 

f 

P(1)
f 

this

other2 P(2)

other1

(c) Result

Figure 3-10: Example 1: introduction of a load node

Example 3 Figure 3-12 illustrate the case of a conditional write on the same field

with the same source node, but with distinct destinations. We are able to establish

that after this conditional update, this.f no longer retains its old value. This code is

equivalent to the previous example, and indeed yields the same effects.
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class A {
var f: A = null
def test(other1: A, other2: A) {

this.f = other1
if ( .. ) {

this.f = other2 // Branch 1
} else {

// Branch 2
}

// Result
}
}

P(2)

this P(0)

P(1)

f 

other1

other2

(a) Branch 1

other2 P(2)

P(1)

other1

P(0)

f 

this

(b) Branch 2

other2

P(2)

P(0)

f 

P(1)

f 
this

other1

(c) Result

Figure 3-11: Example 2: Strong update followed by a conditional update

class A {
var f: A = null
def test(other1: A, other2: A) {

if ( .. ) {
this.f = other1 // Branch 1
} else {

this.f = other2 // Branch 2
}

// Result
}
}

other2 P(2)

P(0)

P(1)
f 

other1

this

(a) Branch 1

P(1)

other2

P(2)

this P(0)

f 

other1

(b) Branch 2

P(0)

P(2)
f 

P(1)

f 

other1

other2

this

(c) Result

Figure 3-12: Example 3: two conditional strong updates

36



3.4 Graph-based Type Analysis

Even though our global type analysis was flow sensitive, it suffered from critical

imprecision with respect to fields and arguments. For this reason, we implemented a

type analysis based on our graphs. The approach we took is to attach type information

to each node. Since nodes represent objects, this is a sensible thing to do. The

additional information we store alongside each node is similar to what we used in our

previous type analysis: 〈Tsub, Tex〉 a pair of two sets of types Tsub and Tex where Tsub

represents the set of types from which we need to include subtypes, and Tex. The

set of runtime types attached to each node is determined based on the node types.

Figure 3-13 illustrates the main cases. We then use those types in order to compute

the set of potential targets for a method call. Given the call obj.foo(), we obtain the

set of runtime types corresponding to obj as follows:

types(obj) =
⋃
{γ(types(n)) | n ∈ nodes(obj)}

we can then look for potential targets in the resulting set of types, similarly to what

we did in our previous type analysis.

Node Type Types Associated
INode(A) 〈∅, {A}〉
LNode(a, f) 〈{type(a.f)}, {type(a.f)}〉
PNode(arg) 〈{type(arg)}, {type(arg)}〉
OBNode(A) 〈∅, {A}〉
NNode 〈∅, ∅〉
GBNode 〈{Object}, {Object}〉 (all)
Literal Nodes 〈∅, {type(Literal)}〉

Figure 3-13: Summary: types associated to each kind of nodes.

If we pessimistically consider that each field read yields a load node, this type

analysis is exactly as precise as the one described previously. The improvements

come from two sides:

• In practice, not every field read yield a load node, for instance, a read performed

after a strong update only targets the newly assigned value, which might be of
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a more precise set of types.

• When inlining the graph of of method call, parameter nodes are mapped to

other nodes at the call site, and load nodes are resolved, if possible. The natural

inlining of methods makes this type analysis context sensitive.

We consider in Figure 3-14 an example illustrating this improvement in precision.

class A {
var f: A = null
def setF(a: A) { f = a }

def test(obj: A) {
val a = new A
a.setF(a)
a.f.foo()
}
def foo() {

println(”A”)
}
}

class B extends A {
override def foo() {

println(”B”)
}
}

Figure 3-14: Improved graph-based type analysis

At the time of the call to a.f.foo() we have from the graph at that program point

that a.f is the inside node corresponding to the object from new A. We thus obtain

〈{}, {A}〉 for a.f instead of 〈{A}, {A}〉, which excludes B.foo from the call.

3.5 Transfer Functions

We now describe in Figure 3-15 the transfer functions illustrating the transformations

to the environment caused by most relevant statements. For complex operations, we

describe their effect in a specific function.

3.5.1 Allocations

The alloc(Graph, r, C,@p) operation is responsible for creating the appropriate inside

node for the class C and assign it to r. @p represents the program point at which
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Statement st Transfer Function f
r = v 〈N,E, locV ar[r 7→ nodes(v)], R〉
r = new C @p alloc(G, r, C,@p)
r = null 〈N ∪ {NNode}, E, locV ar[r 7→ {NNode}], R〉
r.f = v @p write(G, nodes(r), f, nodes(v),@p)
r = v.f @p read(G, nodes(v), f, r,@p)
r = v.meth(a1, .., an) @p call(G, r, v,meth, (a1, ..., an))
return v 〈N,E, locV ar, nodes(v)〉

Figure 3-15: Transfer function f

the allocation occurs, in other words it represents the allocation site.

During allocation, we also need to determine the singleton flag of the correspond-

ing INode. There are two ways of generating inside nodes corresponding to multiple

objects: loops and function calls. We provide here the general idea that is able to

handle both cases soundly. A refinement of this technique in the presence of function

calls is described in Section 3.5.5.

Algorithm 2 describes the transformations made to the graph by alloc. The idea is

simple: before actually including the corresponding inside node into the environment,

we look whether it is already present. In such case, we are in the presence of a loop,

and this inside node needs to be replaced by a non-singleton inside node. Otherwise,

we add the inside node with singleton set to true. Figure 3-16 provides an example

of cycle detection.

Algorithm 2 Allocations

1: function alloc(〈N,E, locV ar,R〉, r, C,@p)
2: n← INode(C, false,@p)
3: nsgt ← INode(C, true,@p)
4: if nsgt ∈ N then
5: Nnew ← (N ∪ {n})− {nsgt}
6: locV arnew ← {v 7→ vnodes[nsgt 7→ n] | (v 7→ vnodes) ∈ locV ar}
7: locV arnew ← locV arnew[r 7→ {n}]
8: else
9: Nnew ← N ∪ {nsgt}
10: locV arnew ← locV ar[r 7→ {nsgt}]
11: end if
12: return 〈Nnew, E, locV arnew, R〉
13: end function
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class A() {
def test() = {

var o: A = null
while (o == null) {

o = new A // @p
}
}
} Before @p, second iteration

I(@[17])

Null

o

After @p, second iteration

I(@[17])

Null

o

Figure 3-16: Cycle Detection, the inside node goes from singleton (blue), to non-
singleton (black). Graphs represent the state during the second loop iteration, before
and after @p.

3.5.2 Field Updates

The write(Graph, from, f, to,@p, allowStrong) operation is responsible for manag-

ing field updates. It represents the modifications done by writing the nodes to to the

field f of nodes from, at program point @p. The allowStrong argument specifies

whether strong updates can be performed by this write operation. The use for this

argument will only become apparent when we describe the mechanics used for method

calls.

Algorithm 3 describes the required graph transformations. The main idea is that,

in case of a strong update, we simply remove old inside edges and add the new one.

The rule is more complex in the case of weak updates , because we need to keep the

old value as well. To determine the old value, we start by following inside edges. If

none exists, we follow outside edges. If this old value is still not determined at this

point, we introduce a load node to represent it.
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Algorithm 3 Field Updates

1: function write(〈N,E, locV ar,R〉, from, f, to,@p, allowStrong)
2: isStrong ← ∀n ∈ from. n.isSingleton ∧ |from| = 1 ∧ allowStrong
3: Nnew ← N
4: if isStrong then
5: Enew ← E − {ie | ie ∈ E ∧ ie is IEdge ∧ ie.v1 ∈ from ∧ ie.f = f}
6: Enew ← Enew ∪ {IEdge(vfrom, f, vto) | vfrom ∈ from ∧ vto ∈ to}
7: else
8: for nfrom ← from do
9: previous← {ie.v2 | ie ∈ E ∧ ie is IEdge ∧ ie.v1 = nfrom ∧ ie.f = f}
10: Enew ← E
11: if previous = ∅ then
12: previous← {ie.v2 | oe ∈ E ∧ ie is OEdge ∧ oe.v1 = nfrom ∧ oe.f =

f}
13: end if
14: if previous = ∅ then
15: lNode← safeLNode(nfrom, f,@p)
16: Enew ← Enew ∪ {IEdge(nfrom, f, lNode), OEdge(nfrom, f, lNode)}
17: Nnew ← Nnew ∪ {lNode}
18: end if
19: Enew ← Enew ∪ {IEdge(nfrom, f, vto) | vto ∈ (previous ∪ to)}
20: end for
21: end if
22: return 〈Nnew, Enew, locV ar,R〉
23: end function
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class A(var f: A) {
def test(a1: A) = {

val a2 = new A(null)
val r = if (a1 != null) a1 else a2
r.f = this
}
}

P(0)

P(1)

f 

L[0]
f 

f 

Nulla2 I(@[18])

this

a1

f 

f 

r

Figure 3-17: Example of a weak update, where one of the old values is undetermined.

3.5.3 Field Reads

The read(Graph, to, f, from,@p) operation is responsible for managing field reads.

It represents the modifications done by reading the field f from the nodes from and

assigning the result to to, at program point @p.

Algorithm 4 describes the transformations done by read. Intuitively, read tries to

determine a previous value by first following inside and then outside edges. If no such

value can be found, it introduces a load node representing this value. We illustrate

this using an example in Figure 3-18 displaying both scenarios.
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Algorithm 4 Field Reads

1: function read(〈N,E, locV ar,R〉, from, f, to,@p)
2: Nnew ← N
3: Enew ← E
4: pointed← ∅
5: for nfrom ← from do
6: previous← {ie.v2 | ie ∈ E ∧ ie is IEdge ∧ ie.v1 = nfrom ∧ ie.f = f}
7: if previous = ∅ then
8: previous← {ie.v2 | oe ∈ E ∧ ie is OEdge ∧ oe.v1 = nfrom ∧ oe.f = f}
9: end if
10: if previous = ∅ then
11: lNode← safeLNode(nfrom, f,@p)
12: Enew ← Enew ∪ {OEdge(nfrom, f, lNode)}
13: Nnew ← Nnew ∪ {lNode}
14: pointed← pointed ∪ {lNode}
15: else
16: pointed← pointed ∪ previous
17: end if
18: end for
19: return 〈Nnew, Enew, locV ar[to 7→ pointed,R〉
20: end function

class A(var f: A) {
def test(a: A) = {

val r1 = a.f
a.f = this
val r2 = a.f
}
}

P(1)

L[7,19]f 

P(0)

f 

r2

r1

a

this

Figure 3-18: Example of read on a field. At the time of r1 = a.f no previous value
is found: a load node is introduced. For r2 = a.f the previous value is found by
following inside edges first.
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3.5.4 Creation of Load Nodes

In the previous algorithms, we used a safeLNode function that is responsible for

safely creating new load nodes in a way that guarantees the analysis will termi-

nate. For example, if safeLNode(from, field,@p) were to naively create a new

LNode(from, field,@p), the analysis would not necessarily terminate!

class A (next: A) {
def traverse = {

val current = this
while(current != null) {

current = current.next // @p
}
}
}

Figure 3-19: Problematic code with respect to load nodes

We now walk through our analysis to illustrate why it would not terminate with

such a definition of safeLNode, given the code provided in Figure 3-19:

1. After the first iteration, the read has created the load node

l1 := LNode(P (0), next,@p), since P (0).next was yet undetermined.

2. At the beginning of the second iteration, we have nodes(current) = {P (0), l1}.

3. After the second iteration, the read has created the load node l2 := LNode(l1, next,@p),

since l1.next or P (0).next.next was undetermined.

4. And so on, a new load node is created at each iteration, the analysis is thus

unable to terminate.

In order to solve this issue, we need to limit the way we generate new load

nodes, so that their number is always bounded. Algorithm 5 describes how we define

safeLNode for such purpose.
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Algorithm 5 Safely Creating Load Nodes

1: function safeLNode(from, f,@p)
2: if from is LNode then
3: fromnew ← from.from
4: else
5: fromnew ← from
6: end if
7: return LNode(fromnew, f,@p)
8: end function

3.5.5 Method Calls

For method calls, the effects of the method are represented by the graph resulting from

the analysis of the function. The callgraph computed after type analysis allows us

to group inter-dependent functions together (in strongly connected components). We

can then perform a topological sort of those strongly connected components, which

basically orders the analysis in such a way that most methods will already have been

analyzed when encountering one of their call sites.

class A {
var f: A = null
def test(a1: A, a2: A, a3: A) {

a2.f = this.f
a1.f = a2
a1.f = a3
}

def plop() {
val o1 = new A
val o2 = new A
val o3 = if (this!=null) o1 else o2
o1.test(o3, o2, o2)
}
}

Figure 3-20: Code example used to illustrate inlining mechanics

To illustrate how methods are handled, we provide a code example containing a

method call in Figure 3-20 in which various operations are performed. We describe

in Algorithm 7 how we handle statements representing method calls. Given the

statement r = v.meth(a1, .., an), we first need to resolve the types corresponding to v,

so that we can collect all methods meth that might be the targets of this call. We then

inline the graph for each target separately, and then join the resulting environments.

The formal description of the inlining algorithm is rather complex, but its intuition

is relatively easy to understand: we start by mapping each write operations from the
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Algorithm 6 Method Call

1: function call(G, r, v,meth, (arg1, ..., argn),@p)
2: typesrec ← resolve(types(v))
3: methods← {m | T ∈ typesrec ∧m ∈ methods(T ) ∧m.name = meth.name}
4: nodesrec ← nodes(v)
5: nodesargs ← (r1, ..., rn) s.t. ri = nodes(argi)
6: return

⊔
{ inlineGraph(G,m,Graphs(m), nodesrec, nodesargs,@p) | m ∈

methods}
7: end function

Algorithm 7 Graph Inlining

1: function inlineGraph(Gcaller,meth,Gcallee, recNodes, argsNodes,@p)
2: 〈map,Gnew〉 ← buildMap(Gcaller,meth,Gcallee, recNodes, argsNodes,@p)
3: repeat
4: Gold ← Gnew

5: mapEdges ← {〈IEdge(mv1, e.f,mv2), e.v1〉 | e ∈ Gcallee.E ∧ e is IEdge ∧
mv1 ∈ map(e.v1) ∧mv2 ∈ map(e.v2)}

6: sources← {〈e.v1, e.f〉 | 〈e, o〉 ∈ mapEdges}
7: for 〈v, f〉 ← sources do
8: edges← {e | 〈e, o〉 ∈ mapEdges ∧ 〈e.v1, e.f〉 = 〈v, f〉}
9: olds← {o | 〈e, o〉 ∈ mapEdges ∧ 〈e.v1, e.f〉 = 〈v, f〉}
10: allowStrong ← ∀o ∈ olds . |map(o)| = 1
11: Gnew ← write(Gnew, {v}, f, {e.v2 | e ∈ edges},@p, allowStrong)
12: end for
13: until Gnew = Gold

14: end function
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callee to corresponding write operations in the caller, using the previously computed

map. Once we have the corresponding write operations grouped by the node and field

they affect, it remains to determine whether this write operation could be strong.

Given a write on v.f , a strong update is allowed if v was only pointed to from the

callee by nodes with v as unique target in the map. In other words, if

∀vorig ∈ map−1(v) . map(vorig) = {v}

It is worth noting that allowing a strong update at this stage does not necessarily

mean that a strong update is indeed performed. It is only enabling the write operation

to perform one if it sees fit to do so. In our example, none of the performed writes

end up being strong updates.

Mapping Nodes Between Graphs

For this inlining to be fully defined, it remains to describe how this map is initially

computed. Algorithm 8 describes how this mapping is performed. It naturally starts

by mapping nodes corresponding to the parameters of the function, including the 0th

argument representing the receiver. All global nodes are also mapped to themselves.

For inside nodes, we first precise the allocation site by composing it with the point

at which the method is called, we do it in a way such that no repetitions are allowed.

Otherwise, it would not terminate in the case of a recursive function. We also, like in

the case of an allocation statement, figure out this node’s singleton flag, by detecting

loops. In case we previously had a singleton node and detected a cycle, we replace it

with a non-singleton node and adjust the map accordingly. We display in Figure 3-

21 the mapping relation between the two graphs at the point of the method call in

Figure 3-20.

In the presence of load nodes, we need to see if they are fully determined in the

caller graph, so that we can resolve them. The resolution is made using their from

node along with their field. Since this node could itself be a yet unresolved load node,

we first make sure that it is resolved by calling resolveLoad on it. As in the case of a
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Algorithm 8 Building Node Map

1: function buildMap(Gcaller,meth,Gcallee, recNodes, argsNodes,@p)
2: Gnew ← Gcaller

3: map← {P (0) 7→ recNodes}
4: for i← 1 to |meth.args| do
5: map = map ∪ {P (i) 7→ argsNodesi}
6: end for
7: for n ∈ LitNodes ∪OBNodes ∪ {NNode,GBNode} do
8: map = map ∪ {n 7→ {n}}
9: end for
10: for in ∈ {n | n ∈ Gcallee.N ∧ n is INode} do
11: pPoint← safeCompose(n.pPoint,@p)
12: iNodesgt ← INode(types(in), true, pPoint)
13: iNode← INode(types(in), false, pPoint)
14: if iNodesgt ∈ Gnew.N ∨ iNode ∈ Gnew.N then
15: Gnew.N ← (Gnew.N ∪ {iNode})− {INodesgt}
16: map← map[iNodesgt 7→ iNode] ∪ {in 7→ {iNode}}
17: else
18: Gnew.N ← Gnew.N ∪ {iNodesgt}
19: map← map ∪ {in 7→ {iNodesgt}}
20: end if
21: end for
22: for ln ∈ {n | n ∈ Gcallee.N ∧ n is LNode} do
23: 〈map,Gnew〉 = resolveLoad(ln,map,Gnew,@p)
24: end for
25: return 〈map,Gnew〉
26: end function
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Figure 3-21: Map relation between Gcallee and Gcaller for the method call in Figure 3-
20. The map is displayed in dotted red arrows.
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read operation, we follow first inside and then outside edges. If no target is found, we

need to maintain the load node in the resulting graph. Here again, we safely refine

its program point. In our example, the load node is determined by following inside

edges from I([@19]) via f , we obtain the set of nodes {NNull}.

Algorithm 9 Resolving Load Nodes

1: function resolveLoad(lNode,map,G,@p)
2: LNode(from, f, pPoint)← lNode
3: if from is LNode then
4: 〈map,G〉 = resolveLoad(from,map,G,@p)
5: end if
6: for n ∈ map(from) do
7: targets← {ie.v2 | ie ∈ G.E ∧ ie is IEdge ∧ ie.v1 = n ∧ ie.f = f}
8: if targets = ∅ then
9: targets← {ie.v2 | oe ∈ G.E ∧ ie is OEdge ∧ oe.v1 = n ∧ oe.f = f}
10: end if
11: if targets = ∅ then
12: pPoint← safeCompose(pPoint,@p)
13: newLNode← safeLNode(from, f, pPoint)
14: G.E ← G.E ∪ {IEdge(n, f, newLNode), OEdge(n, f, newLNode)}
15: G.N ← G.N ∪ {newLNode}
16: map← map ∪ {lNode 7→ {newLNode}}
17: else
18: map← map ∪ {lNode 7→ targets}
19: end if
20: end for
21: return 〈map,G〉
22: end function

To conclude, we provide in Figure 3-22 the graph resulting from the complete

inlining of the method call from our example.

3.5.6 Analyzing Inter-dependant and Recursive Methods

As explained earlier, we analyze groups of inter-dependent functions together. They

are represented by strongly connected components in our call-graph. We construct

the effects of the methods iteratively, assuming that methods have initially no effect

(i.e. their effect graph is empty). The algorithm for the analysis of strongly con-

nected components is outlined in Algorithm 10 and consists of a standard fix-point
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Figure 3-22: Resulting graph after the o1.test(..) method call in Figure 3-20.

mechanism.

Algorithm 10 Analyzing Mutually Recursive Functions

1: function analyzeSCC(scc : {m1, ...,mn})
2: workList← scc
3: while |workList| > 0 do
4: m s.t. m ∈ workList
5: workList← workList−m
6: Gbefore ← Graphs(m)
7: analyze(m)
8: Gafter ← Graphs(m)
9: if Gbefore 6= Gafter then
10: workList← workList ∪ {t | t calls m }
11: end if
12: end while
13: end function

3.6 Argument for Termination

We have seen during the description of the parts composing the analysis that in order

to ensure termination, specific care needs to be taken. We provide here an informal
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argument showing analysis termination.

First of all, we argue that the graphs have a limited number of nodes. We have

two types of nodes that are created dynamically: inside nodes and load nodes. Inside

nodes are specific to certain program points. The number of basic program points is

bounded by the size code. It remains to show that the safeCompose operation only

generates a bounded number of composed program points. The function prevents any

repetitions of program points, we thus have that safeCompose can only generate a

finite number of composed program points. Then, we consider load nodes, which are

determined by a node, a field and a program point. The number of fields are of course

bounded. Without load nodes, the number of nodes is bounded. However, we must

prevent an infinite chain of load nodes. Our safeLNode specifically prevents that,

and thus only allows a finite number of load nodes to be generated. Thus, the number

of nodes is finite. Given that edges are only determined by two nodes and a field,

there is also only a finite number of them. In the end, we thus have a finite number

of distinct graphs.

The argument above is however not sufficient to claim termination, as we still have

to show that our transfer function is monotonic. Again, we argue informally that it

is, given that the only operation reducing the number of edges is a strong update.

However, it is never the case that on a given pair of graphs G1, G2 s.t. G1 @ G2, that

some strong update is applicable in G2 but not in G1. A more in-depth demonstration,

especially with respect to graph inlining, would be required to produce a formal proof,

but is beyond the scope of this work.

3.7 Loop/Function Equivalence

Even though Scala can be used as a one-to-one substitute for an imperative language,

its features favor functional programming. It is thus critical to provide a precise

inter-procedural analysis. We demonstrate in this section that recursive loops and

their corresponding functional version are equivalently represented as graphs. For

instance, Figure 3-23 provides two equivalent implementations of the same code, one
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imperative and one functional.

val c: Constants = initConstants
var s: State = initState
while(cond(s, c)) {

s = update(s, c)
}
s

def f(s : State, c : Constants) : State = {
if(cond(s, c)) {

f(update(s, c), c)
} else {

s
}
}
f(initState, initConstants)

Figure 3-23: Two equivalent implementations, for arbitrary functions cond and update

We expect from the effect graphs to be the same. Indeed, it would be profitable

for two main reasons:

• Scala translates certain call patterns into while loop for efficiency reasons. And

thus, the inference of the effects of a while loop should be well handled.

• Since Scala encourages functional programming, a tool targeted at Scala pro-

grams is expected to be precise in presence of functional code, and notably

recursive function calls.

We argue informally by comparing the fix-point technique used in a loop and the

fix-point performed within a strongly connected component in the call-graph (mu-

tually recursive functions). First, let us introduce some recursive fixpoint function

defined as:

fixpoint(init,F)(0) := init

fixpoint(init,F)(n) := fixpoint(init,F)(n− 1) ∪ F(fixpoint(init,F)(n− 1))

Loop Fix-Point We start by assuming that the effects of the entire looping block

(in this case the effects of s = update(s, c)) are compacted into one specific transfer

function F , mapping the state at the entry of the loop to the state at the end. Given

a state S before the loop, we obtain S after 0 iterations, and S ∪ F(S) after one
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iteration. After two iterations, we obtain S ∪F(S)∪F(S ∪F(S)) which corresponds

to fixpoint(S,F)(2). Naturally, after n iterations we get fixpoint(S,F)(n).

Function Fix-Point When handling mutually recursive functions, we start by as-

suming functions have no effect. We then analyze each function until the graph of

every functions in the strongly connected component are stable. In the present case,

we start by analyzing f assuming that f has yet no effect. The first call to f produces

thus no effect.

At the end of this first analysis, we obtain the initial state S which is given

by the first parameter. The second analysis thus considers a function returning its

first argument as effect, and thus the effect of the call is again F(S). Joined with

the other effect-less branch, we obtain S ∪ F(S). A subsequent iteration yields:

S ∪F(S)∪F(S ∪F(S)) = fixpoint(S,F)(2). After n recursive call, we again obtain

fixpoint(S,F)(n). Provided that F is monotonic (which is the case given that it is

a composition of calls to our transfer function), and that our lattice does not allow

infinite ascending chains, we have that fixpoint(S,F)(∞) exists.

We have thus informally established that both fix-points represent the same effects.

And thus, our analysis has the same precision for either programming style.

3.8 Subsequent Analyses

Using the information gathered by the alias and effect analysis previously described,

we can perform subsequent analyses. We briefly describe three of them:

3.8.1 Purity Analysis

Using the effects graph computed for each method, we can easily determine if a certain

function has no observable effects. We define an observable memory effect as a write

operation on parameter, object, or global nodes. It naturally follows that a method

is considered observably pure if no inside edge can be reached, while traversing the

graph starting from parameter, object, or global nodes. This can be checked using a
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standard depth-first-search algorithm.

3.8.2 Nullness Analysis

Because we represent the null value as a special node, we can detect whether a variable

or object field is potentially null. We are thus able to emit warnings in case a read

or write operation is performed from a potentially null value.

3.8.3 Object Initializations

Checking whether object fields are correctly initialized before usage is a special case

of nullness analysis. Even if a field has a default value, this value will only be assigned

depending on the initialization order. Using the field prior to that point may thus

yield a NullPointer exception. Scala allows mixins-based compositions of classes using

traits, which complicates the initialisation phase considerably. However, because the

Scala compiler linearizes the traits in a phase preceding ours, we are able to analyze

the initialization by following a simpler chain of super classes, similar to what we

would find in Java.
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Chapter 4

Implementation

We have implemented the techniques presented in the previous chapters as part of

a tool called Insane. Insane is built as a plugin for the official Scala compiler. As

an immediate advantage, it grants us immediate access to the trees and all type

information that we need. The compiler allows us to plug our tool between two

existing phases. Depending on where the plugin is inserted, it dramatically changes

the aspect of the trees. In this case, we decided to put it late in the compilation

process, so that we would not have to deal with closures, inner classes, mixins, or

genericity. This however comes with a cost: not all information on parametric types

is available (because of type erasure), and the amount of code to analyze is much

larger.

4.1 Class Hierarchy

The first implementation problem we faced while working with the Scala compiler is

that it does not provide any way to access subtypes of one symbol, only its super

type. For this reason, we had to traverse every symbol defined in the classpath in

order to reconstruct the entire hierarchy, which allowed us to compute subtypes. This

process of traversing every defined symbols in the class path is costly; a minimum of

30’000 symbols are always present, given that the Java and Scala library are always

included. As a consequence, it dominated the analysis time for small examples.
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For this reason, we decided to store the class hierarchy of the Scala and Java

libraries into a database. We use a nested set1 representation for our hierarchical data,

which allows us to retrieve the entire set of subtypes in one SQL query efficiently.

4.2 Pointer and Effect Analysis

As we have seen in Chapter 3, our analysis computes effects graphs for each method

present in the analyzed source. When calling a method, we inline the graph corre-

sponding to the target method into the caller graph.

4.2.1 Library Dependencies

One of the major problems that we faced while trying to analyze even small Scala

programs is that references to the Scala library are ubiquitous even if they are not

explicitly stated in the source. This is caused by the various compiler phases prior

to ours, that expand high-level construct into combinations of lower-level ones. To

illustrate this issue, we consider an apparently self-contained example in Figure 4-1,

and the corresponding code at the time of our phase in Figure 4-2. We can see that

even though the original code made no explicit references to the Scala library, the

actual code that we analyze does.

class A (val next: A∗)

object Test {
def test() = {

val a = new A()
val b = new A(a)
}
}

Figure 4-1: Self-contained example in Scala

1http://dev.mysql.com/tech-resources/articles/hierarchical-data.html
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package <empty> {
class A extends java.lang.Object with ScalaObject {

private[this] val next: Seq =
def next(): Seq = A.this.next
def this(next: Seq): A = {

A.this.next = next
A.super.this()
()
}
}
final object Test extends java.lang.Object with ScalaObject {

def test(): Unit = {
val a: A = new A(immutable.this.Nil)
val b: A = new A(scala.this.Predef.wrapRefArray(

Array[A]{a}.asInstanceOf[Array[java.lang.Object]]()))
()
}
def this(): object Test = {

Test.super.this()
()
}
}
}

Figure 4-2: Corresponding code at our compiler phase

4.2.2 Storing Intermediate Results

Those ubiquitous references to the Scala library force us to analyze the library along

with the code. Given that the library consists of approximately 90’000 methods, it

would be very inefficient to require the library code to be included alongside each

piece of code we want to analyze.

Thankfully, the modularity of the graph-based effects representation allows us to

pre-calculate the graphs for every method of the library and store them in a database.

To store those results in the database, we had to implement a special serialization

procedure, as the state stored in the graphs contained references to internal compiler

structures that were not serializable. Our custom serialization allows for full recovery

of the state.

It is worth noting that this pre-calculation is only possible under the assumption

that the effects of library methods are “self-contained”. This is better expressed in
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terms of the shape of the call-graph: there should be no calls from the library to

non-library methods. This assumption generally does not hold, in the presence of

higher-order functions, or callbacks. This is covered in more details in Section ??.

4.2.3 Unanalyzable Methods

While analyzing the library, we stumbled upon the fact that it is itself not self-

contained but heavily references the Java library. In overall, it calls over 700 distinct

methods from the Java library.

Even though we could in theory apply the same analysis to the Java source code,

our analysis was implemented on top of the Scala compiler, which is unable to compile

Java source code. We thus were not able to apply the same pre-calculation technique

used for the Scala library directly.

Instead of making conservative assumptions and applying havoc on every object

involved in those various library calls, we provided a way for the user to provide

Scala stub (“dummy”) implementations of those Java classes and methods. This is

achieved via annotations put at the level of the classes and methods, that informs

our compiler that this graph is meant to represent a different methods. We illustrate

this use of annotations in Figure 4-3 with an excerpt of the java.math.BigInteger Scala

implementation.
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package insane
package predefined

import annotations.

@AbstractsClass(”java.math.BigInteger”)
class javamathBigInteger {

@AbstractsMethod(”java.math.BigInteger.abs(()java.math.BigInteger)”)
def abs(): java.math.BigInteger = {

new java.math.BigInteger(”42”)
}

// ...

@AbstractsMethod(”java.math.BigInteger.valueOf”+
”((x1: Long)java.math.BigInteger)”)

def valueOf(x1: Long): java.math.BigInteger = {
new java.math.BigInteger(x1)
}
}

Figure 4-3: Dummy Scala implementation of java.math.BigInteger using annotations
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Chapter 5

Related Work

To our knowledge, we are the first trying to perform such alias analysis for Scala. Al-

though Scala compiles to Java bytecode, and thus any analyzer working with bytecode

could in principle be used for analyzing Scala, the steps performed during compilation

introduce many artifacts. For that reason, an analysis focused on Scala will be able

to provide much more useful and precise result than one working with arbitrary Java

bytecode.

Given the usefulness of alias analysis, it has been constantly worked on in the past

decades and remains an active area. Most of the time, alias analysis is not the goal

but the mean to achieve a more sophisticated analysis.

The work that is naturally the most related to this thesis is the work done by

Alexandru Salcianu in [Sal01, Sal06], on which this thesis builds. They provide a

compositional graph based pointer analysis that focus on establishing escaping infor-

mation. While we also provide a similar compositional analysis based on graphs, we

assign slightly different semantics to our graphs to cope with strong updates, that

they did not support. We also handle program points refinement, which allows us to

provide a more precise analysis in the presence of factory methods.

In [DDA10b], they propose to add invariants to refine pointer relations in the

heap. Our analysis is thus less precise in that regard, as it is currently not path

sensitive at all. In [CJ07], they develop a demand-driven alias analysis. It is however

flow insensitive and thus less precise that what we have here. However, the fact that
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it is demand-driven is very interesting.

In [DMM96, BS96, JS01], they describe similar type analysis techniques to com-

pute the call graph in the presence of dynamic dispatch.

One distinction between our work and [Sal06] is that we differentiate between weak

and strong updates. Researchers have looks at ways to further refine this paradigm

by introducing logical predicates that qualify the uniqueness of the object summary

[DDA10a]; although the technique appears appealing, we do not expect that it would

provide much benefit in our setting. Indeed, our analysis already treats most updates

as strong, and it is not clear whether parametrizing them with predicates would allow

us to perform a strong update when we previously could not.

Different alias analysis techniques have been explored in order to perform type

state analysis [SY86, SY93]. In [FD02], instead of figuring out heap aliasing, required

for type state checking, they propose a type system extension that inherently restricts

aliasing interferences. In [HO10], they design an annotation system to describe mes-

sages passed between concurrent objects so that they can be used without any risk

of race-conditions.

Much work has been done in order to obtain guarantees during object initial-

ization [QM09, FX07, CJ07]. For instance, [FX07] proposes type-based techniques

to prevent issues from arising during the initialization phase. In our analysis, we

handle initialization in a straightforward manner by inlining the graphs from the var-

ious constructors. This allows us to detect whether at some point during or after

initialization, an object field retain its default value (i.e. null).

Constructing a precise call-graph in the presence of higher order functions has been

known to be a problematic analysis. It has been shown that it is in fact equivalent

to dynamic dispatch analysis [MSH10]. In Scala, the link between the two is explicit,

since closures get compiled into classes defining an apply method. We could thus

benefit from ideas developed by [Shi88] and later refined by others to improve our

dynamic dispatch analysis for calls to closures.
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Chapter 6

Limitations and Future Work

We conclude with a discussion of some of the current limitations of Insane, as well as

directions for future improvements.

6.1 Concurrency

Considering arbitrary interleaving would considerably complicate our analysis. In-

deed, the concepts of previous value or strong update are not intuitively defined in

the presence of concurrency. For this reason, we decided to ignore concurrency. Since

Scala promotes an actor model for implementing concurrent programs, we believe

that it is reasonable to consider a sequential execution of the code. This would be

safe if objects passed as messages are not arbitrarily modified on both ends, which is

a property that we could check using our analysis, but currently do not.

6.2 Exceptions

It is worth noting that we currently do not handle exceptions. In effect, we ignore

exception handlers (e.g. try/catch blocks), and assume that throw statements redirect

the flow directly to the end of the procedure. This way of handling is not only precise,

but it is also not valid in theory. However, even though we think that this should be

fixed in future versions, we believe that improving the handling of exceptions should

65



only have a limited impact on the resulting precision in terms of effects and alias

information.

6.3 Nullness Analysis

Given that our analysis performs strong updates whenever possible, we are able to

obtain a relatively precise nullness analysis for free. Indeed, if during a call r =

obj.foo or a field access obj.f , we have that NNode ∈ nodes(obj), we can raise a

warning about a potential null dereference that could cause the program to crash

entirely. However, this remains a rather primitive analysis, as it currently does not

take branching conditions into account. As a result, even the following code would

generate a spurious warning:

if (a != null) {

a.foo()

}

It would be interesting to improve the precision of this analysis in order to potentially

spot bugs in existing Scala applications.

It is worth noting that Scala implicitly discourages the use of null to indicate the

absence of values. Rather, it defines an Option[T] datastructure with two subtypes

Some[T ](val) or None. However, nothing prevents a developer to blindly call Op-

tion’s get method, which in the case of None is equivalent to a null-dereference. We

could certainly apply the same principles here in order to detect such cases.

6.4 Higher Order Functions

The presence of Higher Order Functions (HOF) complicates our analysis and compro-

mise its precision. In Scala, HOFs are represented as objects, instances of FunctionX

classes where X is the number of arguments the function has. To illustrate, we con-

sider a use of a HOF:

def test() = {
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plop(42, + 1)

}

def plop(i: Int, f: Int ⇒ Int): Int = f(i)

We have here a function named plop which applies the function f passed as second

argument to its first argument. In test we call that method with 42, and the function

incrementing its argument by one. The result of test should thus be 43. At our phase,

the compiler already translated that code to:

def test(): Int = {

plop(42, (new Testanonfuntest1(): Function1))

}

def plop(i: Int, f: Function1): Int = f.applymcIIsp(i);

class Testanonfuntest1 extends

scala.runtime.AbstractFunction1mcIIsp with Serializable {

final def apply(x1 : Int) : Int = Testanonfuntest1.this.applymcIIsp(x1);

def applymcIIsp(v1: Int): Int =

v1.+(1);

final def apply(v1: java.lang.Object): java.lang.Object =

scala.Int.box(

Testanonfuntest1.this.apply(scala.Int.unbox(v1))

);

}

As we can see, the compiler transformed the type Int ⇒ Int into the general type

Function1. It also transformed the closure + 1 into a class defining, among other

things, a applymcIIsp method which is the specialized name of the method for Int ⇒ Int.

The call to f is transformed into a method call to that applymcIIsp.
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If we recall how type analysis is performed for arguments of methods, we can

immediately see a problem in the presence of HOFs. Indeed, the method plop takes an

argument f of type Function1 which is the super type of all functions of one argument.

The runtime types calculated for f thus includes all closures of one argument, including

ones with incompatible types. As a result, any call using f as a receiver potentially

targets every defined closures.

In order to address that issue, we could implement the following three techniques:

6.4.1 Exploring Type History

The main reason why types are generalized is that our analysis runs after the erra-

sure phase, which is responsible of removing type information that cannot remain at

runtime because of JVM limitations (mostly generic types). Thankfully, the compiler

keeps an history of the types associated to each symbol. We could thus recollect the

type of the arguments prior to the errasure phase, allowing us to limit the targets to

methods of compatible type. Our recent experience with the compiler tells us that

even though that idea is conceptually simple and feasible in theory, there are probably

many hurdles to avoid until we obtain a reliable mechanism for recovering this type

information.

6.4.2 Selective Analysis Inlining

Even though the previous technique would help eliminate many spurious targets,

it would remain highly imprecise. Figure 6-1 provides an example illustrating the

imprecision. Assuming that the closures defined in test1 and test2 are the only instance

of Function1, the effects inferred for plop is the combination of the effects of the two

closures. As a result, we infer that test1 writes to the field a even though it does not.

By selectively inlining the analysis of the method plop in test1 and test2, we could

refine the type of the argument from Function1 to the exact type of the class gener-

ated for each closure. Type analysis would then naturally infer that the f.applymcIIsp

call in plop has only one target. As a result, the effects of test1 and test2 would be
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class Test {
var a: Int = 42

def test1() = {
plop( + 1)

}

def test2() = {
plop(x ⇒ a += 1; a)

}

def plop(f: Int ⇒ Int) = f(42)
}

Figure 6-1: Imprecise effects inference

inferred with respect to the closure they define and use.

6.4.3 Graph-based Delaying of Method Calls

Instead of inlining the entire analysis of a method, we explored ways to generate

graphs in which certain calls would remain unresolved. The main idea is that in the

presence of an imprecise function call, we could replace the call by a special node

indicating a method call, and ”wait” until the receiver gets refined to actually apply

the method call. This refinement would be done automatically by node remapping,

given that we use a graph-based type analysis. We could thus keep the overall mod-

ularity of our analysis, and decide to delay problematic method calls, which would

include but not be limited to HOFs.

Even though this idea is appealing, it is yet still unclear how to manage those

delayed calls while preserving soundness. The main difficulties that such a technique

would bring are of temporal nature. Assumptions of ”happened before” no longer

hold in the presence of delayed calls, causing precision loss:

1. Strong updates could no longer be applied at various places, i.e. in the delayed

method call.

2. Load nodes that were related to those delayed calls cannot be resolved before
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the call itself.

Due to time restrictions, we could not go further with the development of this promis-

ing feature.

6.5 Conclusion

We presented Insane, an interprocedural pointer and effect analysis for Scala. Even

though the analysis considers the entire program, it is compositional and allows inter-

mediate results to be stored for efficient re-use. While information reuse is currently

limited to summaries computed for the Scala standard library, we are let to believe

that modifications required for it to be fully incremental would be small, given that it

is already compositional. Overall, Insane promises to provide an efficient and precise

tool for pointer and effect analysis, an important basic block enabling richer analysis

for Scala in the future.
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