
Effect Analysis for Programs with Callbacks

Etienne Kneuss1, Viktor Kuncak1?, and Philippe Suter1,2

1 École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
2 IBM T.J. Watson Research Center, Yorktown Heights, NY, USA

{firstname.lastname}@epfl.ch, psuter@us.ibm.com

Abstract. We introduce a precise interprocedural effect analysis for
programs with mutable state, dynamic object allocation, and dynamic
dispatch. Our analysis is precise even in the presence of dynamic dis-
patch where the context-insensitive estimate on the number of targets
is very large. This feature makes our analysis appropriate for programs
that manipulate first-class functions (callbacks). We present a framework
in which programs are enriched with special effect statements, and de-
fine the semantics of both program and effect statements as relations
on states. Our framework defines a program composition operator that
is sound with respect to relation composition. Computing the summary
of a procedure then consists of composing all its program statements to
produce a single effect statement. We propose a strategy for applying the
composition operator in a way that balances precision and efficiency.
We instantiate this framework with a domain for tracking read and write
effects, where relations on program states are abstracted as graphs. We
implemented the analysis as a plugin for the Scala compiler. We analyzed
the Scala standard library containing 58000 methods and classified them
into several categories according to their effects. Our analysis proves that
over one half of all methods are pure, identifies a number of conditionally
pure methods, and computes summary graphs and regular expressions
describing the side effects of non-pure methods.

1 Introduction

An appealing programming style uses predominantly functional computation
steps, including higher-order functions, with a disciplined use of side effects. An
opportunity for parallel execution further increases the potential of this style.
Whereas higher-order functions have always been recognized as a pillar of func-
tional programming, they have also become a standard feature of object-oriented
languages such as C# (in the form of delegates), the 2011 standard of C++, and
Java 8.3 Moreover, design patterns popular in the object-oriented programming
community also rely on callbacks, for instance the strategy pattern and the visitor
pattern [13].

? This research was supported in part by the European Research Council Project
“Implicit Programming”

3 See JSR 335 “Project Lambda” http://www.jcp.org/en/jsr/detail?id=335.

2 Kneuss, Kuncak, Suter

Precise analysis of side effects is essential for automated as well as manual
reasoning about such programs. The combination of callbacks and mutation
makes it difficult to design an analysis that is both scalable enough to handle
realistic code bases, and precise enough to handle common patterns such as
local side effects and initialization, which arise both from manual programming
practice and compilation of higher-level concepts. Among key challenges are
flow-sensitivity and precise handling of aliases, as well as precise and scalable
handling of method calls.

Our aim is to support not only automated program analyses and transforma-
tions that rely on effect information, but also program understanding tasks. We
therefore seek to generate readable effect summaries that developers can com-
pare to their intuition of what methods should and should not affect in program
heap. Such summaries must go beyond a pure/impure dichotomy, and should
ideally capture the exact frame condition of the analyzed code fragment — or at
least an acceptable over-approximation. We expect our results in this direction
will help in bootstrapping annotations for Scala effect type systems [26], as well
as lead to the design of more precise versions of such systems.

This paper presents the design, implementation, and evaluation of a new
static analysis for method side effects, which is precise and scalable even in the
presence of callbacks, including higher-order functions. Key design aspects of our
analysis include:

– a relational analysis domain that computes summaries of code blocks and
methods by flow-sensitively tracking side effects and performing strong up-
dates;

– a framework for relational analyses to compute higher-order relational sum-
maries of method calls, which are parameterized by the effects of the methods
being called;

– an automated effect classification and presentation of effect abstractions in
terms of regular expressions, facilitating their understanding by developers.

Our static analyzer, called Insane (INterprocedural Static ANalysis of Effects) is
publicly available from

https://github.com/epfl-lara/insane

We have evaluated Insane on the full Scala standard library, which is widely used
by all Scala programs, and is also publicly available. Our analysis works on a
relatively low-level intermediate representation that is close to Java bytecodes.
Despite this low-level representation, we were able to classify most method calls
as not having any observational side effects. Moreover, our analysis also detects
conditionally pure methods, for which purity is guaranteed provided that a spec-
ified set of subcalls are pure. We also demonstrate the precision of our analysis
on a number of examples that use higher-order functions as control structures.
We are not aware of any other fully automated static analyzer that achieves this
precision while maintaining reasonable performance.

Effect Analysis for Programs with Callbacks 3

2 Overview of Challenges and Solutions

In this section, we present some of the challenges that arise when analyzing
programs written in a higher-order style, and how Insane can tackle them.

Effect attribution. Specific to higher-order programs is the problem of correctly
attributing heap effects. Consider a simple class and a (first-order) function:

class Cell(var visited : Boolean)

def toggle(c : Cell) = {
c.visited = !c.visited

}

Any reasonable analysis for effects would detect that toggle potentially alters the
heap, as it contains a statement that writes to a field of an allocated object. That
effect could informally be summarized as “toggle may modify the .value field of
its first argument”. That information could in turn be retrieved whenever toggle

is used. Consider now the function

def apply(c : Cell, f : Cell⇒Unit) = {
f(c)

}

where Cell⇒Unit denotes the type of a function that takes a Cell as argument and
returns no value. What is the effect of apply on the heap? Surely, apply potentially
has all the effects that toggle has, since the call apply(c, toggle) is equivalent to
toggle(c). It can also potentially have no effect on the heap at all, e.g. if invoked
as apply(c, (cell ⇒ ())). The situation can also be much worse, for instance in the
presence of global objects that may be modified by f. In fact, in the absence
of a dedicated technique, the only sound approximation of the effect of apply

is to state that it can have any effect. This approximation is of course useless,
both from the perspective of a programmer, who doesn’t gain any insight on the
behaviour of apply, and in the context of a broader program analysis, where the
effect cannot be reused modularly.

The solution we propose in this paper is, intuitively, to define the effect of
apply to be “exactly the effect of calling its second argument with its first as a
parameter”. To support this, we extend the notion of effect to be expressive
enough to represent control-flow graphs where edges can themselves be effects.
In the context of Insane we have applied this idea to a domain designed for
tracking heap effects (described in Section 3), although the technique applies to
any relational analysis, as we show in Section 4.

Equipped with this extended notion of effects, we can classify methods as
pure, impure, and conditionally pure. The apply function falls in this last category:
it is pure as long as the methods called from within it are pure as well (in
this case, the invocation of f). Notable examples of conditionally pure functions
include many of the standard higher-order operations on structures which are
used extensively in functional programs (map, fold, foreach, etc.). As an example,
a typical implementation of foreach on linked lists is the following:

4 Kneuss, Kuncak, Suter

class LinkedList[T](var hd : T, var tl : LinkedList[T]) {
def foreach(f : T ⇒ Unit) : Unit = {

var p = this
do {

f(p.hd)
p = p.tl

} while(p != null)
}

}

Correctly characterizing the effects of such functions is essential to analyzing
programs written in a language such as Scala.

Making sense of effects. Another challenge we address in this paper is one of
presentation: when a function is provably pure, this can be reported straight-
forwardly to the programmer. When however it can have effects on the heap,
the pure/impure dichotomy falls short. Consider a function that updates all
(mutable) elements stored in a linked list:

def update(es : LinkedList[Cell]) = {
es.foreach(c ⇒ c.visited = true)

}

Because the closure passed to foreach has an effect, so does the overall function. A
summary stating only that it is impure would be highly unsatisfactory, though:
crucially, it would not give any indication to the programmer that the structure
of the list itself cannot be affected by the writes. As we will see, the precise
internal representation of effects, while suited to a compositional analysis, is
impractical for humans, not the least because it is non-textual. We propose to
bridge this representation gap by using an additional abstraction of effects in
the form of regular expressions that describe sets of fields potentially affected
by effects (see Section 5). This abstraction captures less information than the
internal representation but can readily represent complex effect scenarios. For
the example given above, the following regular expression is reported to the
programmer:

es(.tl)∗.hd.visited

It shows that the fields affected are those reachable through the list (by follow-
ing chains of .tl), but belonging to elements only, thus conveying the desired
information. In Section 6.2, we further demonstrate this generation of human-
readable effect summaries on a set of examples that use the standard Scala
collections library.

3 Effect Analysis for Mutable Shared Structures

The starting point for our analysis is the effect analysis [28, 32]. We here present
an adaptation to our setting, with the support for strong updates, which take
into account statement ordering for mutable heap operations. In the next section

Effect Analysis for Programs with Callbacks 5

we lift this analysis to the case of programs with callbacks (higher-order pro-
grams), for which most existing analyses are imprecise. We thus obtain a unique
combination of precision, both for field updates and for higher-order procedure
invocations.

We start by describing a target language that is expressive enough to encode
most of the intermediate representation of Scala programs that we analyze.

3.1 Intermediate Language Used for the Analysis

The language we target is a typical object oriented language with dynamic dis-
patch. A program is made of a set of classes C which implement methods. We
identify methods uniquely by using the method name prefixed with its declaring
class as in C.m and denote the set of methods in a program M. Our interme-
diate language has no ad-hoc method overloading because the affected methods
can always be renamed after type checking. We assume that, for each method,
a standard control-flow graph is available, where edges are labeled with simple
program statements. Each of these graphs contains a source node entry, and a
sink node exit. Figure 1 lists the statements in our intermediate language, along
with their meaning.

Statement Meaning

v = w assign w to v
v = o.f read field o.f into v
o.f = v update field o.f with v
v = new C allocate an object of class C and store the reference to it in v
v = o.m(a1, ..., an) call method m of object o and store the result in v

Fig. 1. Program statements P considered in the target language.

Because of dynamic dispatch, a call statement can target multiple methods,
depending on the runtime type of the receiver object. For each method call
o.m(), we can compute a superset of targets targets(o.m) ⊆ M∪ {?} using the
static type of the receiver. If the hierarchy is not bounded through final classes
or methods, we also include the special ”?” target to represent the arbitrary
methods that could be defined in unknown extensions of the program. Thus, we
do not always assume access to the entire program: this assumption is defined
as a parameter of the analysis, and we will see later how it affects it.

3.2 Effects as Graph Transformers

We next outline our graph-based representation of compositional effects. Our
approach is related to the representation originally used for escape analysis [27,
28]. The meaning of such an effect is a relation on program heaps which over-
approximates the behavior of a fragments of code (e.g. methods). Section 4 lifts

6 Kneuss, Kuncak, Suter

I1

L1

.nxt .elem

L2

Lv2

.nxt

.elemlst
Lv1

v

.nxt .elem

class List(var elem: Int,
var nxt: List = null)

def prepend(lst: List, v: Int) {
lst.nxt = new List(lst.elem, lst.nxt)
lst.elem = v

}

Fig. 2. Example of a graph representing the effects of prepend. Read edges lead to load
nodes that represent unknown values, and solid edges represent field assignments.

this representation to a more general, higher-order settings, which gives our final
analysis.

Figure 2 shows an example of a simple function and its resulting graph-based
effect. In this graph, Lv1 and Lv2 represent unknown local variables, here the
parameters of the function. I1 is an inside node corresponding to an object allo-
cation. L1 and L2 are two load nodes that reference values for fields of Lv1 which
are unknown at this time. While read (dashed) edges do not strictly represent
effects, they are necessary to resolve the meaning of nodes when composing this
effect at call-sites.

In general, our effect graphs are composed of nodes representing memory
locations. We distinguish three kinds of nodes: inside nodes are allocated objects.
Because we use the allocation-site abstraction for these, we associate with them a
flag indicating whether the node is a singleton or a summary node. Load nodes
represent unknown fields. Load nodes represent accesses to unknown parts of
the heap; supporting them is a crucial requirement for modular effect analyses.
Finally, graphs may contain special nodes for unresolved local variables, such as
parameters.

We also define two types of edges labeled with fields. Write edges, repre-
sented by a plain (solid) edge in the graphical representation, and read edges,
represented by dashed edges in the graph. Read edges provide an access paths to
past or intermediate values of fields, and are used to resolve load nodes. Write
edges represent must-write modifications. Along with the graph, we also keep a
mapping from local variables to sets of nodes.

Our analysis directly defines rules to compute the composition of any ef-
fect graph with a statement that makes an individual heap modification. It is
also possible to represent the meaning of each individual statement as an ef-
fect graph itself; the result of executing statement on a current effect graph
then corresponds to composing two effect graphs. However, the main need for
composition arises in modular analysis of function calls.

Effect Analysis for Programs with Callbacks 7

3.3 Composing Effects

Composition is a key component of most modular analyses. It is typically re-
quired for interprocedural reasoning. In our setting, it also plays an important
role as a building block in our analysis framework for programs with callbacks,
which we describe in Section 4. We now describe how composition applies to
effect graphs. This operation is done in a specific direction: we say that an in-
ner effect graph is applied to an outer effect graph. Merging graphs works by
first constructing a map from inner nodes to equivalent outer nodes. This map,
initially incomplete, expands during the merging process.

Importing inside nodes. The first step of the merging process is to import inside
nodes from the inner graph to the outer graph. We specialize the labels rep-
resenting their allocation sites to include the label corresponding to the point
at which we compose the graphs. This property is crucial for our analysis as
case-classes, an ubiquitous feature of Scala, rewrite to factory methods. Once
the refined label is determined, we check whether we import a singleton node in
an environment in which it already exists. In such case, the node is imported as
a summary node.

Resolving load nodes. The next important operation when merging two graphs
is the resolution of load nodes from the inner graph to nodes in the outer graph.
The procedure works as follows: for each inner load node we look at all its source
nodes, by following read edges in the opposite direction. Note that the source
node of a load node might be a load node itself, in which case we recursively
invoke the resolution operation. We then compute using the map all the nodes
in the outer graph corresponding to the source nodes.

The resolution follows by performing a read operation from the corresponding
source nodes in the outer graph. Once a load node is resolved to a set of nodes
in the outer graph, the equivalence map is updated to reflect this.

Applying write effects. Given the map obtained by resolving load nodes, we
apply write edges found in the inner graph to corresponding edges in the outer
graph. We need to make sure that a strong update in the inner graph can remain
strong, given the outer graph and the map.

The composition not only executes the last two steps, but repeats them until
convergence of the outer graph. Once a fix-point is reached, we have successfully
applied full meaning of the inner graph to the outer graph. Such application
until fix-point is crucial for correctness in the presence of unknown aliasing and
strong updates. We illustrate this merging operation in Figure 3.

4 Compositional Analysis of Higher-Order Code

The composition operator on effect graphs presented in the previous section
allows us to analyze programs without dynamic dispatch. Standard approaches
to extend it to dynamic dispatch are either imprecise or lose modularity. In

8 Kneuss, Kuncak, Suter

I1

L3I2

.f .f .f .f

I ′3

L1

.g .g

a
Lv1

b
Lv2

L2

I3

.g

.f

.g .g

.f

a
Lv1

I1

I2

L1

innerouter result

Fig. 3. Merging a graph with load nodes and strong updates in a context that does
not permit a strong update. Inside nodes are imported after refining their label.

this section, we therefore extend the basic analysis to support dynamic dispatch
(including higher-order functions and callbacks) in both precise and a rather
modular way. The methodology by which we extend the core analysis to the
higher-order case is independent of the particular domain of effect graphs, so
we present it in terms of a framework for precise interprocedural analysis of
functions with callbacks.

Our framework works on top of any abstract interpretation-based analysis
whose abstract domain R represents relations between program states. The ab-
stract domain described in the previous section matches these requirements.
Along with a set of control-flow graphs over statements P previously discussed,
we assume the existence of other usual components of such analyses: a con-
cretization function γ : R→ (2S)S and a transfer function Tf : (P ×R)→ R.

We now define a composition operator � : R × R → R for elements of the
abstract domain, with the following property:

∀e, f ∈ R . (γ(e) ◦ γ(f)) ⊆ γ(e � f)

that is

∀s0, s1, s2 . s1 ∈ γ(e)(s0) ∧ s2 ∈ γ(f)(s1) =⇒ s2 ∈ γ(e � f)(s0)

In other words, � must compose abstract relations in such a way that the result is
a valid approximation of the corresponding composition in the concrete domain.

4.1 Control-Flow Graph Summarization

Summarization consists of replacing a part of the control-flow graph by a state-
ment that over-approximates its effects. Concretely, we first augment the lan-
guage with a special summary statement, characterized by a single abstract
value:

Pext = P ∪ {Smr(a ∈ R)}

Effect Analysis for Programs with Callbacks 9

Consequently, we define Tfext over Pext:

Tfext(s)(r) =

{
Tf(s)(r) if s ∈ P
r � a if s = Smr(a)

Let c be the control-flow graph of some procedure over Pext, and a and b
two nodes of c such that a strictly dominates b and b post-dominates a. In such
a situation, all paths from entry to b go through a and all paths from a to exit
go through b. Let us consider the sub-graph between a and b, which we denote
by a ¨ b. This graph can be viewed as a control-flow graph with a as its source
and b as its sink. The summarization consists of replacing a ¨ b by a single
edge labelled with a summary statement obtained by analyzing the control-flow
graph a ¨ b in isolation.

We observe that while composition over the concrete domain is associative, it
is generally not the case for �. Moreover, different orders of applications yield in-
comparable results. In fact, the order in which the summarizations are performed
plays an important role in the overall result. When possible, left-associativity is
preferred as it better encapsulates a forward, top-down analysis and can leverage
past information.

4.2 Partial Unfolding

Control-flow graph summarization presented above is one of the building blocks
of our compositional framework. The other one is a mechanism for replacing
method calls by summaries, or unfolding, which we present here.

When faced with a call statement o.m(args), the analysis will extract infor-
mation about o from the data-flow facts and compute the set of its potential
static targets To.m ⊆ M. The control-flow graphs corresponding to the targets
are then included after a non-deterministic split. It is worth noting that the set of
targets To.m is generally not complete. Indeed, this process is performed during
the fix-point computation, facts about o might still grow in the lattice during
future iterations. The original call is therefore kept and annotated to exclude
targets already unfolded as pictured in Figure 4. In certain situations, we can
conclude that all targets have been covered, rendering the alternative call edge
infeasible and thus removable.

4.3 Combining Unfolding and Summarization

We distinguish two main kinds of summaries. A summary that contains unana-
lyzed method calls is said to be conditional. In contrast, a definite summary is
fully reduced down to a single edge with a summary statement.

We now illustrate the flexibility provided by our framework through a simple
example displayed in Figure 5. There are in general multiple ways to generate
a definite summary from a control-flow graph, depending on the interleaving of
summarization and unfolding operations.

10 Kneuss, Kuncak, Suter

a b
o : C2 CFG C2.m

o : C1

CFG C1.m

r = o.m(args) \ {C1.m,C2.m}

Fig. 4. Example of unfolding with Tcall = {C1.m,C2.m}.

sealed class A {
def m1() {

val o = new A;
this.m2(o)

}

def m2(o: A) {
this.m3()
o.f()

}

// .. continuing class A

def m3() { }

def f() { }
}

class B extends A {
override def f() { .. }

}

Fig. 5. Example of a chain of method calls.

For instance, one way to generate a summary for A.m1 would consist of the
following steps: first, we fully summarize A.m3, A.f and B.f . We unfold their call
in A.m2, summarize the result, unfold it in A.m1 and finally summarize it. This
would represent a completely modular approach, where summaries are reused
as much as possible. While being perhaps the most efficient way to compute a
summary (since intermediate summaries for A.m2, A.m3, A.f and B.f are small,
definite effects) it is also the least precise. Indeed, in this order, we have no precise
information on o at the time of analyzing o.f() and thus we have to consider every
static targets— here A.f and B.f , leading to an imprecise summary. We note
that this approach, while generally used by traditional compositional analyses,
falls short in the presence of callbacks where the number of static targets is
typically large (>1’000 for the Scala library). In contrast, we could have waited
to analyze o.f() by generating a conditional summary for A.m2 where this.m3() is
unfolded but o.f() remains unanalyzed. We refer to the decision of not analyzing
a method call as delaying.

4.4 Controlled Delaying

We have seen through the examples above that choosing when to unfold a method
call can have a important impact in terms of performance and precision. In our
framework, we delegate this decision to a function D(call, ctx). The precision and

Effect Analysis for Programs with Callbacks 11

performance of the analysis are thus parametrized in D. Fixing D(. . .) = false
ensures that every method is analyzed modularly, in a top-down fashion, lead-
ing to an imprecise analysis. On the other hand, having D(. . .) = true forces
the analysis to delay every method call, leading to the analysis of the complete
control-flow graph at the entry point. While it ensures a precise result, it will
produce the largest intermediate graphs, which will slow the analysis consider-
ably. Another problem we can identify is with respect to recursion, which we
discuss specifically in the following section.

We also note that the analysis must be able to conservatively reason about
delayed method calls in order to proceed past them. A conservative approach is
to assume that facts flowing through such method calls get reset to the identity
relation.

4.5 Handling Recursion

Assuming the underlying abstract interpretation-based analysis does terminate
(which we do ensure for effect graphs), we still need to ensure that the control-
flow graph does not keep changing due to unfoldings. For this reason, we need
to take special measures for cycles in the call-graph.

Detecting recursion statically is non-trivial, especially in the presence of call-
backs. An attempt using a refined version of a standard class analysis proved
to be overly imprecise: it would flag every higher-order functions as recursive.
Therefore, Insane discovers recursive methods lazily during the analysis when
closing a loop in the progressively constructed call-graph. It then rewinds the
analysis until the beginning of the loop in the lasso-shaped call-graph in order
to handle the cycle safely. We handle recursion by ensuring that only definite
summaries are generated for methods within the cycle. We in fact enforce termi-
nation by requiring that D(c, ctx) returns false for any call c within the call-graph
cycle.

It is worth noting that D(. . .) is only constrained for calls within the call-
graph cycle: we are free to decide to delay when located at the boundaries of
a cycle. It is in general critical for precision purposes to delay the analysis of
the entire cycle as much as possible. When analyzing a set of mutually recursive
functions, we start by assuming that all have a definite summary of identity,
indicating no effect. The process then uses a standard fix-point iterative process
and builds up summaries until convergence.

4.6 Instantiation for Effect Graphs

We now discuss the instantiation of this framework in the context of effect graphs
presented in Section 3. We can quickly identify that our abstract domain is
relational and thus candidate for use in this framework. The original statements
are thus extended with a summary statement characterized by an effect graph:

Pext := P ∪ {Smr(G)}

12 Kneuss, Kuncak, Suter

We can also notice that the graph merging operation acts as composition oper-
ator �:

G1 �G2 := merge G2 in G1

For the delaying decision function D, we base our decision on a combina-
tion of multiple factors. One important factor is of course the number of targets
a method currently has. We also check whether the receiver escapes the cur-
rent function, indicating that delaying might improve its precision. As expected,
experiments indicate that this decision function dictates the trade-off between
performance and precision of the overall analysis.

In case the call at hand is recursive, we conservatively prevent its delaying.
However, we also check whether the number of targets is not too big. In practice,
we consider this upper limit to be 50. We argue that effects would become overly
imprecise anyway once we exceeds this many targets for a single call, without
the ability to delay. In such cases, the analysis gives up and assigns > as definite
summary to all concerned functions.

Compositional summaries already give us a powerful form of context sensitiv-
ity but it is not always sufficient in practice, namely in the presence of recursive
methods relying on callbacks. We thus had to introduce another form of context-
sensitivity, which specializes the analysis of the same method for multiple call
signatures. We compute these signatures combining the type-estimates for each
argument.

5 Producing Readable Effect Summaries

We have demonstrated that summaries based on control-flow graphs are a flexible
and expressive representation of heap modifications. However, such graph-based
summaries are often not directly usable as feedback to programmers, for several
reasons. First, they capture both read and write effects, whereas users are likely
interested primarily in write effects. Next, they can refer to internal memory
cells that are allocated within a method and do not participate directly in an
effect. Last, but not the least they are not in textual form and can be difficult
to interpret by developers used to textual representations.

To improve the usefulness of the analysis for program understanding pur-
poses, we aim to describe effect summaries of methods in a more concise and
textual form. For this purpose we adopt regular expressions because they are a
common representation for infinite sets of strings, and can therefore characterize
access paths [10]. They also have a notable tradition of use for representing heap
effects [17]. We adopt the general idea of representing graphs using sets of paths
to generate an approximate textual representation of graph-based summaries for
our analysis.

We first show how we construct a regular expression for a definite summary.
For definite summaries, a graph-based effect is available that summarizes the
method. The graph not only describes which fields can been modified, but also
to which value they can be assigned. On the other hand, the corresponding

Effect Analysis for Programs with Callbacks 13

regular expression only describes which fields could be written to. The task
therefore reduces to generating a conservative set of paths to fields that may be
modified. We construct the following non-deterministic finite state automaton
(Q,Σ, δ, q0, {qf}) based on a graph effect G:

Q := G.V ∪ {qf , q0}

Σ := {f | v1
f→ v2 ∈ G.E}

δ := G.E ∪ {q0
n→ n | n ∈ G.V ∧ connecting(n)}

∪ {v1
f→ qf | v1

f→ v2 ∈ G.IE ∧ v1 is not an inside node}

The automaton accepts strings of words where “letters” are names of the
method arguments and field accesses. Given an access path, o.f1.f2. · · · .fn−1.fn,
the automaton accepts it if fn might be modified on the set of objects reached
via o.f1.f2. · · · .fn−1. We exclude writes on inside nodes, as they represent writes
that are not be observable from outside, since the node represents objects allo-
cated within the function. From the non-deterministic automaton, we produce
a regular expression by first determinizing it, then minimizing the obtained de-
terministic automaton, and finally applying a standard transformation into a
regular expression by successive state elimination. Figure 6 shows the effect
graph and the corresponding automata (non-minimized and minimized) for the
example from the end of Section 2. In general, we found the passage through
determinization and minimization to have a significant positive impact on the
conciseness of the final expression.

es
es es

.tl
.tl

.tl

.hd
.hd

.hd

.visited.visited.visited

L1

L2

Lv

.tl

.tl.hd

.hd

q0 q0

q1

q3

q4

q1

q3

q2

q4

Fig. 6. Transformation steps from an effect graph to a minimized DFA. The graph
on the left is the definite effect of an impure list traversal. The center graph is the
corresponding NFA whose accepting language represents paths to modified fields. The
last graph is the minimized DFA to be translated to a regular expression.

For a conditional summary, we extract the set of unanalyzed method calls,
then compute a (definite) effect assuming that they are all pure, and present
the corresponding regular expression along with the set of calls. The natural
interpretation is that the regular expression captures all possible writes under
the assumption that no function in the set has a side effect.

14 Kneuss, Kuncak, Suter

Section 6.2 and in particular Figure 8 below show some of the regular ex-
pressions that were built from our analysis of collections in the standard Scala
library.

6 Evaluation on Scala Library

We implemented the analysis described in the previous sections as part of a tool
called Insane. Insane is a plugin for the official Scala compiler.

6.1 Overall Results

To evaluate the precision of our analysis, we ran it on the entire Scala library,
composed of approximately 58000 methods at our stage of compilation. We be-
lieve this is a relevant benchmark: due to the functional paradigm encouraged in
Scala, several methods are of higher-order nature. For instance, collection classes
typically define traversal methods that take functions as arguments, such as filter,
fold, exists, or foreach . It is worth noting that we assumed a closed-world in order
to analyze the library. Indeed, since most classes of the library are fully exten-
sible, analyzing it without this assumption would not yield interesting results.
Given that even getters and setters can in general be extended, most of effects
would depend on future extensions, resulting in almost no definite summary.

We proceeded as follows: for each method, we analyzed it using its declara-
tion context and classified the resulting summary as a member of one of four
categories: if the summary is definite, we look for observable effects. Depending
on the presence of observable effects, the method is flagged either as pure or
impure. If the summary is conditional, we check if the effect would be pure un-
der the assumption that every remaining (delayed) method call is pure. In such
cases, the effect is said to be conditionally pure. Otherwise, the effect is said to
be impure. Lastly, an effect can be top if either the analysis timed out, or if
more than 50 targets were to be unrolled in a situation where delaying was not
available (e.g. recursive methods). We used a timeout of 2 minutes per function.
We note that while these parameters are to some extent arbitrary, we estimate
that they correspond to reasonable expectations for the analysis to be useful.
The different categories of effects form a lattice:

pure v conditionally pure v impure v >

Figure 7 displays the number of summaries per category and per package.
Observe that most methods are either pure or conditionally pure, which is what
one would expect in a library that encourages functional programming.

Overall, the entire library takes short of twenty hours to be fully processed.
This is mostly due to the fact that in this scenario, we compute a summary for
each method. Thanks to its modularity though, this analysis could be used in an
incremental fashion, reanalyzing only modified code and new dependencies while
reusing past, unchanged results. Depending on the level of context-sensitivity,
past results can be efficiently reused in an incremental fashion and allow the
analysis to scale well to large applications.

Effect Analysis for Programs with Callbacks 15

Package Methods Pure Cond. Pure Impure >
scala 5721 79% 11% 10% 1%
scala.annotation 41 93% 2% 2% 2%
scala.beans 25 64% 8% 28% 0%
scala.collection 34810 46% 17% 29% 8%
scala.compat 9 22% 33% 44% 0%
scala.io 546 47% 11% 40% 2%
scala.math 1847 67% 28% 5% 0%
scala.parallel 39 77% 23% 0% 0%
scala.ref 113 58% 3% 39% 0%
scala.reflect 5862 50% 9% 40% 1%
scala.runtime 1620 61% 25% 14% 1%
scala.sys 767 44% 22% 30% 4%
scala.testing 44 52% 2% 43% 2%
scala.text 115 87% 0% 11% 2%
scala.util 1786 51% 11% 32% 6%
scala.util.parsing 2206 56% 12% 27% 5%
scala.xml 2860 56% 11% 30% 3%

Total: 58410 52% 15% 27% 6%

Fig. 7. Decomposition of resulting summaries per package.

immutable.TreeSet:

Generic trav. Any
Pure trav. Pure
Impure trav. es.tree(.right | .left)∗.key.visited
Grow Pure

immutable.List:

Generic trav. Pure (conditionally on the closure)
Pure trav. Pure
Impure trav. es.tl∗.hd.visited
Grow Pure

mutable.HashSet:

Generic trav. Pure (conditionally on the closure)
Pure trav. Pure
Impure trav. es.table.store.visited

Grow
es.tableSize | es.table.store |
es.sizemap.store | es.sizemap | es.table

mutable.LinkedList:

Generic trav. Pure (conditionally on the closure)
Pure trav. Pure
Impure trav. es.next∗.elem.visited
Grow es.next.next∗

mutable.ArrayBuffer:

Generic trav. Any
Pure trav. Pure
Impure trav. es.array.store.visited
Grow es.size0 | es.array.store | es.array

Fig. 8. Readable effect descriptions obtained from graph summaries from four opera-
tions performed on five kinds of collections.

16 Kneuss, Kuncak, Suter

6.2 Selected Examples

To demonstrate the precision of the analysis, we take a closer look at several
methods relying on the library, for which the pre-computed summaries can be
reused in order to efficiently produce precise results. We targeted five collec-
tions, two immutable ones: TreeSet and List, and three mutable ones: HashSet,
LinkedList and ArrayBuffer. For each of these collections, we analyze code perform-
ing four operations, shown in Figure 9. Figure 10 shows functions corresponding
to these four operations when applied to the TreeSet collection, and summarizes
the general classes of operations.

1. Generic Traversal: call foreach with an arbitrary closure,
2. Pure Traversal: call foreach with a pure closure,
3. Impure Traversal: call foreach with a closure modifying the collection elements,
4. Growing: build a larger collection, by copying and extending it for immutable

ones, or modifying it in place for mutable ones. The method used for growing
depends on what is available in the public interface of the collection, e.g. add,
append or prepend.

Fig. 9. Operations on containers used to evaluate analysis results

class Elem(val i: Int) { var visited = false }
def genTrav(es: TreeSet[Elem], f: Elem ⇒ Unit) = es.foreach(f)
def pureTrav(es: TreeSet[Elem]) = es.foreach { e ⇒ () }
def impureTrav(es: TreeSet[Elem]) = es.foreach { .visited = true }
def grow(es: TreeSet[Elem], e: Elem) = es + e

Fig. 10. The particular four operations applied on the TreeSet collection

The resulting effects are converted into a readable format, as described in
Section 5 and displayed in Figure 8. We note that producing these regular ex-
pressions takes in each case under 5 seconds. First of all, we can see that all
pure traversals are indeed proved pure and have no effect on the internal rep-
resentation of the collections. Also, we are often able to report that a generic
traversal has no effect on the collection assuming the closure passed is pure.
The exceptions are the generic traversals of TreeSet and ArrayBuffer. In these two
cases, the computed effect is >, due to the fact that their respective traversal
routines are implemented using a recursive function with highly dynamic dis-
patch within its body. We can see however that thanks to context sensitivity,
we are able to obtain precise results when the closure is determined. For impure
traversal of TreeSet, the analysis had to generate and combine no less than 27
method summaries. The fact that the resulting effect remains precise despite the
fundamental complexity of the library shows that the analysis achieves its goal
of combining precision and modularity through summaries, even in the case of
higher-order programs.

In the cases of impure traversals, the effects correctly report that all elements
of the collections may be modified. Additionally, they uncover the underlying

Effect Analysis for Programs with Callbacks 17

implementation structures. For example, we can see that the HashSet class is
implemented using a flat hash table (using open addressing) instead of the usual
array of chained buckets. It is worth noting that TreeSet is implemented using red-
black trees. For mutable collections, growing the collection indeed has an effect
on the underlying implementation. Growing immutable collections remains pure
since the modifications are applied to the returned copy only.

Overall, we believe such summaries are extremely useful, as they qualify the
impurity. In almost all cases, the programmer can rely on the result produced
by Insane to conclude that the functions have the intended effects.

7 Related Work

Our goals stand at the intersection of two long-standing fundamental problems:

1. effect and alias analysis for mutable linked structures; [8, 6, 16, 21, 31, 25];
2. control-flow analysis [29] for higher-order functional programs.

Because we have considered the heap analysis to be the first-order challenge,
we have focused on adapting the ideas from the first category to higher-order
settings. In the future we will also consider the dual methodology, incorporating
recent insights from the second line of approaches [20].

The analysis domain presented in this paper builds on the work [27, 28], who
used graphs to encode method effect summaries independently from aliasing
relations. The elements of this abstract domain are best understood as state
transformers, rather than sets of heaps. This observation, which is key to the
applicability of the generic relational framework described in Section 4, was also
made by Madhavan, Ramalingam, and Vaswani [18], who have formalized their
analysis and applied it to C# code. The same authors very recently extended
their analysis to provide special support for higher-order procedures [19]. An
important difference with our work is that [19] summarizes higher-order func-
tions using only CFGs or a particular, fixed, normal form: a loop around the
un-analyzed invocations. Because our analysis supports arbitrary conditional
summaries, it is a strict generalization in terms of precision of summaries. An-
other distinctive feature of our analysis is its support for strong updates, which
is crucial to obtain a good approximation of many patterns commonly found in
Scala code. In fact, the reduction of CFGs to normal form in [19] relies on graph
transformers being monotonic, a property that is incompatible with strong up-
dates. Finally, our tool also produces regular expression summaries, delivering
results that can be immediately useful to programmers.

The idea of delaying parts of the analysis has been explored before in interpro-
cedural analyses to improve context-sensitivity [9, 33] or to speed up bottom-up
whole-program analyses [14]. Our work shows that this approach also brings
benefits to the analysis of programs with callbacks, and is in fact critical to its
applicability.

Our analysis masks only effects that can be proved to be performed on fresh
objects in given procedure call contexts. A more ambitious agenda is to mask ef-
fects across method calls of an abstract data types, which resulted in a spectrum

18 Kneuss, Kuncak, Suter

of techniques with different flexibility and annotation burden [15, 24, 5, 7, 4, 12, 2,
1]. What differentiates our analysis is that it is fully automated, but we do hope
to benefit in the future from user hints expressing encapsulation, information
hiding, or representation independence.

Separation logic [11, 3] and implicit dynamic frames [30, 23] are two popular
paradigms for controlling modifications to heap regions. Nordio et al. describe
an adaptation of dynamic frames [22] for the automated verification of programs
with higher-order functions. We note that effect analysis is a separate analysis,
whereas separation logic analyses need to perform shape and effect analyses at
the same time. This coupling of shape and effect, through the notion of footprint,
makes it harder to deploy separation logic-based analyses as lightweight compo-
nents that are separate from subsequent analysis phases. Moreover, the state of
the art in separation logic analyses is such that primarily linked list structures
can be analyzed in a scalable way, whereas our analysis handles general graphs
and is less sensitive to aliasing relationships.

The importance of conditional effects expressed as a function of arguments
has been identified in an effect system [26] for Scala, which requires some type
annotations and is higher-level, but provides more control over encapsulation
and elegantly balances the expressive power with the simplicity of annotations.
The resulting system is fully modular and supports, e.g. separate compilation.
In the future, we will consider using a system such as Insane as an automated
annotation engine for the effect system, alleviating the bootstrapping problems
that come with the annotation requirements.

8 Conclusion

Knowing the effects of program procedures is a fundamental activity for any
reasoning task involving imperative code. We have presented an algorithm, a
tool, and experiments showing that this task is feasible for programs written in
Scala, a modern functional and object-oriented language. Our solution involves
a general framework for relational effect analyses designed to support different
automated reasoning strategies and allowing analysis designers to experiment
with trade-offs between precision and time. Building on this framework we have
introduced an abstract domain designed to track read and write effects on the
heap. Combining the framework with the abstract domain, we have obtained an
effect analysis for Scala. We have implemented and evaluated the analysis on the
entire Scala standard library, producing a detailed breakdown of its 58000 func-
tions by purity status. Finally, we have developed and implemented a technique
to produce human-readable summaries of the effects to make them immediately
useful to programmers. We have shown that these summaries can concisely and
naturally describe heap regions, thus producing feedback that conveys much
more information than a simple pure/impure dichotomy. Insane works on unan-
notated code and can thus readily be applied to existing code bases, facilitating
program understanding, as well as subsequent deeper analyses and verification
tasks.

Effect Analysis for Programs with Callbacks 19

References

1. Banerjee, A., Naumann, D.A.: State based ownership, reentrance, and encapsula-
tion. In: ECOOP (2005)

2. Barnett, M., DeLine, R., Fähndrich, M., Leino, K.R.M., Schulte, W.: Verification of
object-oriented programs with invariants. J. Object Technology 3(6), 27–56 (2004)

3. Berdine, J., Cook, B., Ishtiaq, S.: SLAyer: Memory safety for systems-level code.
In: CAV. pp. 178–183 (2011)

4. Boyapati, C., Liskov, B., Shrira, L.: Ownership types for object encapsulation. In:
POPL. pp. 213–223 (2003)

5. Cavalcanti, A., Naumann, D.A.: Forward simulation for data refinement of classes.
In: Proceedings of Formal Methods Europe FME’2002. LNCS, vol. 2391 (2002)

6. Chase, D.R., Wegman, M.N., Zadeck, F.K.: Analysis of pointers and structures.
In: PLDI. pp. 296–310 (1990)

7. Clarke, D., Drossopoulou, S.: Ownership, encapsulation and the disjointness of
type and effect. In: OOPSLA (2002)

8. Cooper, K.D., Kennedy, K.: Interprocedural side-effect analysis in linear time. In:
PLDI. pp. 57–66 (1988)

9. Cousot, P., Cousot, R.: Modular static program analysis. In: CC. LNCS, vol. 2304,
pp. 159–178. Springer (2002)

10. Deutsch, A.: A storeless model of aliasing and its abstractions using finite rep-
resentations of right-regular equivalence relations. In: Proc. Int. Conf. Computer
Languages, Oakland, California. pp. 2–13 (1992)

11. Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M.J., Vafeiadis, V.: Con-
current abstract predicates. In: ECOOP. pp. 504–528 (2010)

12. Fähndrich, M., Leino, K.R.M.: Heap monotonic typestates. In: Aliasing, Confine-
ment and Ownership in object-oriented programming (IWACO) (2003)

13. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading, Mass. (1994)

14. Jensen, S.H., Møller, A., Thiemann, P.: Interprocedural analysis with lazy propa-
gation. In: SAS. LNCS, vol. 6337, pp. 320–339. Springer (2010)

15. Jifeng, H., Hoare, C.A.R., Sanders, J.W.: Data refinement refined. In: ESOP’86.
LNCS, vol. 213 (1986)

16. Jouvelot, P., Gifford, D.K.: Algebraic reconstruction of types and effects. In: POPL.
pp. 303–310 (1991)

17. Larus, J.R., Hilfinger, P.N.: Detecting conflicts between structure accesses. In:
Proc. ACM PLDI. Atlanta, GA (Jun 1988)

18. Madhavan, R., Ramalingam, G., Vaswani, K.: Purity analysis: An abstract inter-
pretation formulation. In: SAS. LNCS, vol. 6887, pp. 7–24. Springer (2011)

19. Madhavan, R., Ramalingam, G., Vaswani, K.: Modular heap analysis for higher-
order programs. In: SAS. LNCS, vol. 7460, pp. 370–387. Springer (2012)

20. Might, M., Smaragdakis, Y., Horn, D.V.: Resolving and exploiting the k-CFA para-
dox: illuminating functional vs. object-oriented program analysis. In: PLDI. pp.
305–315 (2010)

21. Milanova, A., Rountev, A., Ryder, B.G.: Parameterized object sensitivity for
points-to and side-effect analyses for java. In: ISSTA. pp. 1–11 (2002)

22. Nordio, M., Calcagno, C., Meyer, B., Müller, P., Tschannen, J.: Reasoning about
function objects. In: Vitek, J. (ed.) TOOLS (48). LNCS, vol. 6141, pp. 79–96.
Springer (2010)

20 Kneuss, Kuncak, Suter

23. Parkinson, M.J., Summers, A.J.: The relationship between separation logic and
implicit dynamic frames. In: ESOP. pp. 439–458 (2011)

24. de Roever, W.P., Engelhardt, K.: Data Refinement: Model-oriented proof methods
and their comparison. Cambridge University Press (1998)

25. Rountev, A.: Precise identification of side-effect-free methods in java. In: ICSM.
pp. 82–91 (2004)

26. Rytz, L., Odersky, M., Haller, P.: Lightweight polymorphic effects. In: ECOOP.
LNCS, vol. 7313, pp. 258–282. Springer (2012)

27. Salcianu, A., Rinard, M.C.: Purity and side effect analysis for Java programs. In:
VMCAI. LNCS, vol. 3385, pp. 199–215. Springer (2005)

28. Salcianu, A.D.: Pointer Analysis for Java Programs: Novel Techniques and Appli-
cations. Ph.D. thesis, Massachusetts Institute of Technology (2006)

29. Shivers, O.: Control-flow analysis in scheme. In: PLDI. pp. 164–174 (1988)
30. Smans, J., Jacobs, B., Piessens, F.: Implicit dynamic frames: Combining dynamic

frames and separation logic. In: ECOOP. pp. 148–172 (2009)
31. Tkachuk, O., Dwyer, M.B.: Adapting side effects analysis for modular program

model checking. In: ESEC / SIGSOFT FSE. pp. 188–197 (2003)
32. Whaley, J., Rinard, M.: Compositional pointer and escape analysis for Java pro-

grams. In: Proc. 14th Annual ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications. Denver (Nov 1999)

33. Yorsh, G., Yahav, E., Chandra, S.: Generating precise and concise procedure sum-
maries. In: POPL. pp. 221–234. ACM (2008)

